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http://www.youtube.com/watch?v=IxLnoy-GzqI

Task definition

Historical perspective

Spectrogram-based music source separation
Waveform-based music source separation
Comparing models: evaluation

Outlook




Historical perspective: unsupervised & linear models
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Linear model example

linear approximation activations
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Unsupervised factorization of the mixture
into bases (w) and activations (h)



Historical perspective: unsupervised & linear models
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music mix

Spectrogram-based music source separation

source
separation

vocals

Muth et al., 2018. “Improving DNN-based Music Source Separation using Phase Features” in ICML Workshop on ML for music.



Filtering spectrograms with masks

spectrogram time-freq mask estimated
(model input) (model output) source

Figure from: Jansson et al., 2017. "Singing voice separation with deep U-Net convolutional networks" in ISMIR.
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Huang et al., 2014. “Singing-voice separation from monaural
recordings using deep recurrent neural networks” in ICASSP.



Convolutional auto-encoder
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Chandna et al., 2017. “Monaural audio source separation using deep convolutional neural networks” in LVA/ICA.



U-net auto-encoder
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Jansson et al., 2017. “Singing voice separation with deep U-net” in ISMIR.



MMDenselLSTM
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Takahashi et al., 2018. “MMDenseLSTM: an efficient combination of convolutional
and recurrent neural networks for audio source separation” in IWAENC.



Open-unmix: a state-of-the-art implementation

mix spectrograms target spectrograms
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https://qgithub.com/sigsep/open-unmix-pytorch



https://github.com/sigsep/open-unmix-pytorch

Sams-Net: attention-based
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Li et al., 2019. “Sams-Net: A Sliced Attention-based Neural Network for Music Source Separation”, arXiv.
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Why end-to-end music source separation?

source
separation

music mix vocals

I) Are we missing crucial information when discarding the phase?

II) When using the phase of the mixture at synthesis time,are we
introducing artifacts that are limiting our model’s performance?



Why filtering spectrograms with masks?

spectrogram time-freq mask estimated
(model input) (model output) source

lIl) It's challenging to separate masked signals (“perceptually” hidden sounds) via filtering spectrograms

Figure from: Jansson et al., 2017. "Singing voice separation with deep U-Net convolutional networks" in ISMIR.



music mix

source
separation

I) Are we missing crucial information when discarding the phase?

II) When using the phase of the mixture at synthesis time, are we
introducing artifacts that are limiting our model’s performance?

[Il) Is challenging to separate masked signals via filtering spectrograms



End-to-end music source separation

Music Mix vocals

deep
learning




Other (active) research directions:
Use the complex STFT as i/o interface?

Kameoka et al., 2009. “ComplexNMF: A new sparse representation for acoustic signals” in ICASSP.
Dubey et al., 2017. “Does phase matter for monaural source separation?” in arXiv.

Le Roux et al., 2019. “Phasebook and friends: Leveraging discrete representations for source separation”
in IEEE Journal of Selected Topics in Signal Processing.

Tan et al., 2019. “Complex Spectral Mapping with a CRNN for Monaural Speech Enhancement” in ICASSP.

Liu et al., 2019. “Supervised Speech Enhancement with Real Spetrum Approximation” in ICASSP.



Other (active) research directions:
Alternative models at synthesis time?

Virtanen and Klapuri, 2000. “Separation of harmonic sound sources using sinusoidal modeling,” in ICASSP.

Chandna et al., 2019. “A vocoder based method for singing voice extraction” in ICASSP.
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Historical perspective: waveform-based models?
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waveform-based ICA

02 : T T T T
. A . : g ; b
o 200 400 600 800 1000 1200 ases
0.1 T , : T .
_od . L L L .
o 200 400 600 800 1000 1200 A
0.2 - T T T :
a4 —_— —_—
° | ~ T k k T
. L . . L .
200 400 600 800 1000 1200
0.1 T T T T T k
5 L . . L . i i
o 200 400 600 800 1000 1200 t t
0.1 ; ; : . : actvations
) L 1 . L .
o 200 400 600 800 1000 1200

Problem 1: phase sensitive basis
Problem 2: simplicity of the linear model

Figure from: Blumensath and Davies, 2004. “Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music,” in ICASSP.
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Historical perspective: waveform-based models?

unsupervised supervised

/N !
ICA > deep

learning
|
independence
between sources

linear models

=

non-negative non-linear
sources model

NMF cannot be used with waveforms
due to its non-negative constraint!
(waveforms range from -1 to 1)



Historical perspective: waveform-based models?

unsupervised supervised
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A widely-used set of tools:

filtering spectrograms
linear models
unsupervised learning

audio domain knowledge



..maybe we could try another toolset?

fiterinrg — synthesis?
rearmedels — non-linear models?
unsuperviseeHearning — supervised learning?
agdio-domainkrowledge — data driven?



End-to-end music source separation: 12 publications

Stoller et al., 2018. “Wave-u-net: A multi-scale neural network for end-to-end audio source separation” in arXiv.
Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.
Lluis, et al., 2018. “End-to-end music source separation: is it possible in the waveform domain?” in arXiv.

Slizovskaia et al., 2018. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in arXiv.
Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.
Kaspersen, 2019. “HydraNet: A Network For Singing Voice Separation”. Master Thesis.

Akhmetov et al., 2019. “Time Domain Source Separation with Spectral Penalties”. Technical Report.

Défossez et al., 2019. “Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed” in arXiv.
Narayanaswamy et al., 2019. “Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets” in arXiv.
Défossez et al., 2019. “Music Source Separation in the Waveform Domain” in arXiv.

Samuel et al., 2019. “Meta-learning Extractors for Music Source Separation” in ICASSP.

Nakamura et al., 2020. “Time-domain audio source separation based on wave-u-net combined with discrete wavelet transform” in ICASSP.

ALL THE PUBLICATIONS (WE ARE AWARE OF) IN CHRONOLOGICAL ORDER AS OF FEBRUARY 2020



End-to-end music source separation: architectures
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Introduction: the “generative” Wavenet
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Van den Oord et al., 2016. “Wavenet: a generative model for audio” in arXiv.



A “regression” Wavenet for music source separation
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Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



Fully convolutional & deterministic

Denoised Sample
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Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



Fully convolutional & deterministic

Denoised Samples
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Real time inference!

1601 samples input — = 0.56 sec per second of music on GPU!

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



End-to-end music source separation: architectures
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TasNet: encoder + separator + decoder

Separated

Mixture —>  Separation waveforms
waveform J | : :
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Défossez, et al., 2019. “Music source separation in the waveform domain” in arxiv.
Luo, et al. 2018. “Tasnet: time-domain audio separation network for real-time, single-channel speech separation” in ICASSP.



Separator: meta-learning with TasNet
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Encoders and Decoders
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Samuel et al., 2020. “Meta-learning Extractors for Music Source Separation” in ICASSP.
Kadioglu et al., 2020. “An empirical study of Conv-TasNet” in ICASSP.



End-to-end music source separation: architectures
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Multi-resolution & Convolutional autoencoder

estimated sources
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Multi-resolution CNN: efficient way

to represent 3 periods!

Multi-resolution CNN = Inception CNN
(different filter shapes in
the same CNN layer)
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Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.



Multi-resolution & Convolutional autoencoder

estimated sources
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Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.
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Wave-U-net
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Stoller et al., 2018. “Wave-u-net: A multi-scale neural network for end-to-end audio source separation” in arXiv.




Wave-u-net extensions



Wave-u-net extensions

e Multiplicative conditioning using instrument labels at the bottleneck.

Slizovskaia et al., 2019. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in ICASSP.

e Data augmentation.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.

e Loss function in the spectral domain.

Akhmetov et al., 2019. “Time Domain Source Separation with Spectral Penalties”. Technical Report.

e Architectural changes:

o Add BiLSTMs at the bottleneck.
Kaspersen, 2019. “HydraNet: A Network For Singing Voice Separation”. Master Thesis.

o Use dilated convolutions and dense CNNs.
Narayanaswamy et al., 2019. “Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets” in arXiv.

o Downsampling & upsampling with discrete wavelet transform (w/ DWT).
Nakamura et al., 2020. “Time-domain audio source separation based on wave-u-net combined w/ DWT” in ICASSP.
e Achieve comparable results to a spectrogram-based model: Demucs.

w/ BILSTMs at the bottleneck, data augmentation, and some additional architectural changes.

Défossez et al., 2019. “Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed” in arXiv.
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Data augmentation strategies

It is used to artificially expand the size of a training dataset by creating modified versions of it.

e Random swapping left/right channel for each source
e Random scaling sources

e Random mixing of sources from different songs

e Pitch-shifting

e Time-stretching

Uhlich et al, 2017. “Improving music source separation based on deep neural networks through data augmentation and network blending” in ICASSP.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.
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Wave-u-net extensions: Demucs
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Wave-u-net extensions: Demucs

MV
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Wave-u-net extensions: Demucs
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Wave-u-net extensions: Wave-U-net vs. Demucs

| Block Operation Shape |
Input (16384, 1)
DS, repeated for Convl1D(Fe - 4, fq)
i=1,...,L Decimate (4, 288)
ConvlD(Fe - (L +1), fa) (4,312)
Upsample
UZ.S’_reLPea‘ed 1;‘” Concat (DS block i)
T Convl1D(Fe - 4, fu) (16834, 24)
Concat(Input) (16834, 25)
Conv1D(K, 1) (16834, 2)

Wave-U-net: building blocks
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| GLU(Conv1d(Cout, 2Cou, K =1,§ =1)) |

/  Relu(Convd(Cin, Cour, K =8,5 =4)) \

Encoder;_; or input

Demucs: building blocks



Wave-u-net extensions: Wave-U-net vs. Demucs

| Block Operation Shape |
Input (16384, 1)
DS, repeated for Convl1D(Fe - 4, fq)
i=1,...,L Decimate (4, 288)
ConvlD(Fe - (L + 1), fa) (4,312)
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[Encoderi ] [Decoderi_H or LSTM]
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Demucs: building blocks



Deconvolutions and high-frequency artifacts

3k Hz
2k Hz

1k Hz

frequency

OHz

Checkerboard artifacts in images

High-frequency buzzing noise in audio

Odena et al., 2016. "Deconvolution and Checkerboard Artifacts" in Distill.
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Evaluation metrics: SDR, SIR, SAR

2
SDR := 10log, [ targe | “overall performance”
||einterf + €noise 1 ea,rtif”2

2
SIR := 101log;, M “interference from other
| €intert |2 sources”
SAR =10 loglo H target interf nmse” algc.)rlthrrllc
|| eartit]|? artifacts
http://craffel.qithub.io/mir_eval/ https://qgithub.com/sigsep/sigsep-mus-eval/

Vincent et al., 2006. “Performance measurement in blind audio source separation” in IEEE TASLP.


http://craffel.github.io/mir_eval/
https://github.com/sigsep/sigsep-mus-eval/

Subjective evaluation

Session 1 Block 1 Trial 1 Session 1 Block 1 Trial 1
Attending ONLY to the BACKGROUND, select the category Attending ONLY to the SPEECH SIGNAL, select the category
which best describes the sample you just heard. which best describes the sample you just heard.
the BACKGROUND in this sample was the SPEECH SIGNAL in this sample was
= 'ORTED
5 NOT iNOTI Select the category which best describes the sample you
4 — SLIGHTLY just heard for purposes of everyday speech communication. 7 DISTORTED
3 - NOTICEAE the OVERALL SPEECH SAMPLE was * DISTORTED
2 - SOMEWHAT 5 - EXCELLENT YISTORTED
1 - VERY INTRI 4 - GOOD STORTED
3 - FAIR
2 - POOR
1 - BAD

ITU-T Recommendation P.835

Subjective test methodology for evaluating speech communication systems that
include noise suppression algorithm



Which architectures seem to work the best?

. Test SDR (dB)
Model Domain # Param Vocals Drums Bass Other Average
IRM oracle N/A N/A 9.43 8.45 7.12 7.85 8.21
DeepConvSep [29] Spectrogram 0.32M 2.31 3.14 0.17 -2.13 0.89
WaveNet [30] Waveform 3.30M 3.35 4.13 2.49 2.60 2.60
Wave-U-Net [13] Waveform 10.20M 325 4.22 3.21 2.25 3.23
Spect U-Net [31] Spectrogram 9.84M 5.74 4.66 367 3.40 4.37
Open-Unmix [11] Spectrogram 8.90M 6.32 5.73 523 4.02 5.36
Demucs [14] Waveform 66.42M 6.29 6.08 5.83 4.12 5.58
Meta-TasNet [32] Waveform 12.00M 6.40 5.91 5.58 4.19 552
MMDenseLSTM [16] Spectrogram 4.88M 6.60 6.41 5.16 4.15 5.58
Sams-Net Spectrogram 3. 70M 6.61 6.63 5.25 4.09 5.65
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Which architectures seem to work the best?

. Test SDR (dB)
Model Domain # Param Vocals Drums Bass Other Average
IRM oracle N/A N/A 943 8.45 7.12 7.85 8.21
DeepConvSep [29] Spectrogram 0.32M 2.31 3.14 0.17 -2.13 0.89
WaveNet [30] Waveform 3.30M 3.35 4.13 2.49 2.60 2.60
Wave-U-Net [13] Waveform 10.20M 3.25 4.22 321 2.25 3.23
Spect U-Net [31] Spectrogram 9.84M 5.74 4.66 3.67 3.40 4.37
Open-Unmix [11] Spectrogram 8.90M 6.32 5.3 523 4.02 5.36
Demucs [14] Waveform 648M 6.29 6.08 5.83 4.12 5.58
Meta-TasNet [32] Waveform 52M 6.40 5.91 5.58 4.19 552
MMDenseLSTM [16] Spectrogram 4.88M 6.60 6.41 516 4.15 598
Sams-Net Spectrogram 3. 70M 6.61 6.63 5.25 4.09 5.65




Which architectures seem to work the best?

Model Domain MOS Quality MOS Contamination
Open-Unmix spectrogram 3.0/5 3.3/5
Demucs waveform 3.2/5 3.3/5

Conv-Tasnet waveform 29/5 34/5
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MUSIC SIGNAL PROCESSING

Musical Source Separation

An infroduction

any people listen 1o recorded music as part of their ev-
eryday lives, e, from radio or TV programs, compact
discs, downloads, or, increasingly, online streaming ser-
vices. Sometimes we might want to remix the balance within
the music, perhaps to make the vocals louder or to suppress an
unwanted sound, or we might want to upmix 2 two-channel
stereo recording 10 a 5.1-channel surround sound system. We.
might also want to change the spatial location of a musical
i lof

straightforward, provided we have access o separate sound
‘channels (stems) for each musical audio object.

However, if we only have access (0 the final recording mix,
which is usually the case, this is much more challenging. To
estimate the original musical sources, which would allow us
10 remix, suppress, or upmix the sources, we need to perform
‘musical source separation (MSS).

ln the gl scrossgacaion rbln, v s g coe

some original source. s‘gnals D —

ie.

source signals given the mixtures. In some cases, ths is rela-
tively straightforward, e g, if there are at least as many mix-
there are sources and if the mixing process is fixed,

with no delays, filters, or nonlinear mastering (1]
However, MSS is normally more challenging. Typically,

with the addition of fillers and reverberation sometimes o

sources may move or the production parameters may chxnge,
‘meaning that the mixture s time varying.

‘Nevertheless proper.

For exampl

signals often have a regular harmonic structure of frequencies
at regular intervals and can have frequency contours charac-
terisic of each musical instrument. They may also repea, in
particular, temporal patterns based on the musical structure.

os3s888/19O01PEEE VEESIGALPROCESSING MAGAINE | oo 2019 | a
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End-to-end music source separation:
is it possible in the waveform domain?

Francesc Lluis* Jordi Pons* Xavier Serra

Music Technology Group, Universitat Pompeu Fabra, Barcelona.
nane. surnanc@upt .edu

Abstract

Most of the currently successful source separation technigues
e the magiude specogam s i, nd r Uirelore by
dz’anll omiing p oL s Spul: e gt To ik o

rmation, of us-
e o o o e separation — which
take into account al the information availsble in the raw audio
sigal nclding he phas. Allhough during the las decades
end-toer

sounds, i s rare 1o find identical waveforms produced by the
same sound source.  As a result of this varisbility, 2 single
basis' cannot represent a sound source and therefore, one re-
quires i) a large amount of bases, or i) shift-invariant bases to
obtain accurate decompositions (8, 10]. Although several ma-
trix decomposition methods have been used for decomposing
aneton bsed wizures (78,9, thene e e e
as well as the spectrogram-ba
Due 10 the above: mcnlmm‘d e, the phse of com-

S et 1 Sk ) e
can perform similarly (Gf not better) than a spectrogram-based
deep learning model. Namely: a Wavenet-based model we pro-
pose and Wave-U-Net can outperform DeepConySep, a recent
spectrogram-based deep leaning model.

Tndex Terms: source separation, end-to-end learning.

1. Introduction

When two or more sounds co-cxist, they interfere with ach
other resulting in a novel mixture signal where sounds are su-
sed (and, sked)

sound

st cotibion o 10 cherved e gl

the recent advances in deep learing, source separa-
om tchlqien Rave Spoovd subaily; 1. Toecolngly
though, nearly all successful deep leaming algorithms use the
magnitude spectrogram as input [1, 2, 3] — and are therefore,
by default, omitting part of the signal: the phase. Omitiing the
potentially useful information of the phase entails the risk of
finding a sub-optimal solution. In this work, we aim (o take full
advantage of the acoustic modeling capabilties of decp learn-

of music source separation directly in an end-to-end leaming
Saten, Coapanly e imvetiation s cetered on by
ing how 1o sepri i sutes (65 snging e, bas or
i) ity o 2 s e mit
Pkt bt o e ecoumponbiseuel
0 v sl T fld of sl s sopunation: Sov.
exal algorithms have been proposed throughout the years, with
independent component analysis (ICA) (4], sparse coding (5],
or non-negative matrix factorization (NMF) [6] being the most
used ones. Given that magnitude or power spectrogram rep-
jons are always non-negative, imposing & non-negative
constraint (like in NMF) is particularly useful when an
ing these spectrograms — but less appropriate for processing
waveforms, which range from -1 to 1. For that reason, meth-
ods like ICA and sparse coding have historically been used to

ever, given the unpredictable behavior of the phase in real-life

*Contributed equally.

plex as-
suming that magritude spectrograms already carry meaningful
information about the sound sources (o be separated. Phase re-
lated problems disappear when sounds are just represented as
magnitude or power spectrograms, since different realizations
of the same sound are almost identical in this time-frequency
plane. This allows to easily overcome the variability problem
found when operating with waveforms.
Most matrix decomposition methods rely on & signal model
sasuing i soree i ol inhe e domn [T
ver, the addition of signals in the time and frequency
domainsis notcquivalnt f phases are discarded. Only in cx-
et E{IX(k)} = [V (k) + [Ya(k)

‘This means that we can approxin:

‘domain summation in the power spectral domain. For that rea-

son, many approaches wtilize power spectrograms as inputs.

Although magnitude spectrograms work well in practice [11],

there is o similar theoretical justification for such an inconsis-

tecy ithhe sgunl rodelwhen the s e discarde.
Finally, note that these methods operating on top of spec-

" .

main practice is to flter the original magnitude or power spec-
trogram with (predicted) time-frequency masks. Accordingly,
the original noisy phase of the mixture is used when synthe-
ring the waveform of the estimated sources — which might
inroduce an aditional source of eror [10]. Notably, many
iodern spectrogram-based deep learning models are also re-
Iying on s same (poentlly proviemade)appronch (2. 12]
To overcome this issue, some tred to consider the phase when
wrating the sources [13, 14, 15]%, or some others refied on &
sinusoidal signal model at synthesis time [16]. However, in our
work, we do not want 1o rely on any time-frequency transform
or any signal model. Instead, we aim to directly approach the.
problem in the waveform domai

around the idea of di
ing the phas information when discard-
5 41 Whon caig thegham o o mi i sutin faiy
are we introducing artifacts that are limiting our model’s per-
formance? O, since magnitude spectrograms (differently from

K
sum of bases, which represent a source or componens of a source.
2 STFT numbx i

https://sigsep.qithub.io/tutorials/
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