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Acronyms

MLP: multi layer perceptron = feed-forward neural network
RNN: recurrent neural network

LSTM: long-short term memory

CNN: convolutional neural network

BN: batch normalization

..the following slides assume you know these concepts!
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The deep learning pipeline
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The deep learning pipeline: input?
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How to format the input (audio) data?

Waveform Time-freqguency representation
end-to-end learning e.g.. log-mel spectrogram
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The deep learning pipeline: front-end?
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CNN front-ends for audio classification

Waveform Time-freqguency representation
end-to-end learning e.g.. log-mel spectrogram
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Sample-level Small-rectangular filters
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Domain knowledge to design CNN front-ends

Waveform Time-freqguency representation
end-to-end learning e.g.. log-mel spectrogram
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Domain knowledge to design CNN front-ends

Waveform Time-freqguency representation
end-to-end learning e.g.. log-mel spectrogram

filter length: 512 window length? Explicitly tailoring the CNN towards
stride: 256 hop size? learning temporal or timbral cues

frame-level vertical or horizontal filters



based on input signal?
domain filters
knowledge? config? waveform spectrogram
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CNN layer




DSP wisdom to design CNN front ends

Waveform Time-freqguency representation
end-to-end learning e.g.. log-mel spectrogram
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Frame-level (many shapes!) Vertical and/or horizontal



based on input signal?
domain filters
knowledge? config? waveform spectrogram
nimal sample-level small-rectangular filters
minima
no exp’zggg o mWMsm 3x1 ... 3x1 3xl %Ms 3x3 .. 3x3 3x3
e fi frame-level vertical OR horizontal
single filter
yes shape in 1%
CNN layer | or
il frame-level vertical AND/OR horizontal
many filter

yes shapes in 1%
CNN layer




CNN front-ends for audio classification

Sample-level: Lee et al., 2017 — Sample-level Deep Convolutional Neural Networks for Music Auto-
tagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

Small-rectangular filters: Choi et al., 2016 — Automatic tagging using deep convolutional neural networks
in Proceedings of the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 — End-to-end learning for music audio
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 — Unsupervised feature learning for audio classification using convolutional
deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 — Improved musical onset detection with convolutional neural networks
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 — Learning multiscale features directly from waveforms
in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 — Experimenting with musically motivated
convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing
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ArXiv: https.//arxiv.org/abs/1805.00237
Code: https.//github.com/jordipons/elmarc



Methodology
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Figure 5: Classification performance of random-weight networks vs pretrained and finetuned networks.
Left: NORB-mono. Right: CIFAR-10-mono (Error bars represent a 95% confidence interval about the mean)

Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, e
Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng 4 Fast architecture selection
Stanford University
Stanford, CA 94305

When we plot the classification performance of random-weight architectures against trained-weight
{asaxe, pangwei, zhenghao, mbhand, bipins, ang}@cs .stanford.edu P pe g g gh

architectures, a distinctive trend emerges: we see that architectures which perform well with random
weights also tend to perform well with pretrained and finetuned weights, and vice versa (Fig. 5). In-
tuitively, our analysis in Section 2 suggests that random-weight performance is not truly random but
should correlate with the corresponding trained-weight performance, as both are linked to intrinsic
properties of the architecture. Indeed. this happens in practice.



Methodology

Goal? Compare different (randomly weighted) architectures

Method? Features (embeddings of random CNN)
+ classifier

Compare classification accuracies when
using different (randomly weighted) architectures

Data? Fault-filtered GTZAN,
Extended Ballroom, UrbanSounds8k



Pipeline of our study: input?
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Pipeline of our study: front-end?
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based on input signal?
domain filters
knowledge? config? waveform spectrogram
.. sample-level
minimal
no filter mWMsm 3x1 .. 3x1 3xl
expression
_ , frame-level (length: 512)
single filter
yes shape in 1%
CNN layer
, frame-level (512, 256, 128, 64, 32)
many filter
yes shapes in 1%
CNN layer




Architectural details: waveform models

Additional layer for the fame-level architectures to
allow a fair comparison with the (deep) sample-level
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based on input signal?

domain filters
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.. sample-level small-rectangular filters: VGG
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single filter
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many filter ( ) timbral

yes shapes in 1%
CNN layer




Further detalls about the timbral + temporal

Temporal

(same) energy envelope

Musically motivated CNNs
(Pons et al., 2016 — 2017)
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.. sample-level small-rectangular filters: VGG
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The deep learning pipeline: back-end?
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Studied back-ends: SVM and ELM classifiers

a SOLVED

SVM. suppo_rt ELM: extreme
vector machine learning machine



The deep learning pipeline: output
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Random CNN features: fault-filtered GTZAN
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59.65 % (best random CNN) < 82.1 % (SOTA)



Random CNN features: Extended Ballroom
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Do you remember the temporal CNN?

Temporal

MEAN POOL

(same) energy envelope



Random CNN features: Urban Sound 8k
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70.74 % (best random CNN) < 73 % (SOTA)



Conclusions

Main CNN front-ends for audio-classification where presented

Spectrogram front-ends > waveform front-ends
Waveform front-ends: sample-level >> frame-level many > frame-level
Spectrogram front-ends: 7x86 > 7x96

One can achieve reasonable results without using domain knowledge
Domain knowledge intuitions are valid guides for designing CNN-based models
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