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Acronyms

MLP: multi layer perceptron  ≡  feed-forward neural network
RNN: recurrent neural network
LSTM: long-short term memory
CNN: convolutional neural network
BN: batch normalization

       ..the following slides assume you know these concepts!
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Which is our goal / task?

input outputmachine learning

waveform

or any audio 
representation!

phonetic 
transcription

(music) audio
tagging

event detection

deep learning model



  

The deep learning pipeline
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The deep learning pipeline: input?

input

?



  

How to format the input (audio) data?

Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram



  

The deep learning pipeline: front-end?

input front-end

waveform

spectrogram
?



  

waveform spectrogram

based on 
domain 
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filters 

config?
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CNN front-ends for audio classification

Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

Sample-level Small-rectangular filters



  

waveform spectrogram
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Domain knowledge to design CNN front-ends

Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram



  

Domain knowledge to design CNN front-ends

Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram

frame-level vertical or horizontal filters

filter length: 512    window length?
stride: 256                       hop size?

Explicitly tailoring the CNN towards
 learning temporal or timbral cues



  

waveform spectrogram
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DSP wisdom to design CNN front ends

Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram

Frame-level (many shapes!) Vertical and/or horizontal

Explicitly tailoring the CNN towards
 learning temporal and timbral cues

Efficient way 
to represent 
4 periods!



  

waveform spectrogram

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

small-rectangular filterssample-level
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shapes in 1st 
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shape in 1st 
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frame-level vertical AND/OR horizontal

or

input signal?



  

CNN front-ends for audio classification
Sample-level:  Lee et al., 2017 – Sample-level Deep Convolutional Neural Networks for Music Auto-
tagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

Small-rectangular filters: Choi et al., 2016 – Automatic tagging using deep convolutional neural networks 
in Proceedings of the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 – End-to-end learning for music audio
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional 
deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 – Learning multiscale features directly from waveforms
in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 – Experimenting with musically motivated 
convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing



  

The deep learning pipeline: output

input outputfront-end back-end

waveform

spectrogram
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architectures

phonetic 
transcription
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tagging

event detection

DNN?
RNN?
Attention?
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ArXiv: https://arxiv.org/abs/1805.00237
Code: https://github.com/jordipons/elmarc



  

Methodology



  

Methodology

Method? Features (embeddings of random CNN) 
+ classifier

Compare classification accuracies when 
using different (randomly weighted) architectures

Goal? Compare different (randomly weighted) architectures

Data? Fault-filtered GTZAN, 
Extended Ballroom, UrbanSounds8k



  

Pipeline of our study: input?

input outputfront-end classifier

waveform

log-mel
spectrogram

(music) audio
tagging



  

Pipeline of our study: front-end?

input outputfront-end classifier

(music) audio
tagging?

waveform

log-mel
spectrogram



  

waveform spectrogram
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Architectural details: waveform models

Additional layer for the fame-level architectures to 
allow a fair comparison with the (deep) sample-level



  

waveform spectrogram

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

small-rectangular filters: VGGsample-level
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timbral temporal



  

Further details about the timbral + temporal

Musically motivated CNNs 
(Pons et al., 2016 – 2017)



  

waveform spectrogram
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The deep learning pipeline: back-end?

input front-end classifier

waveform

log-mel
spectrogram

?

output

(music) audio
tagging

nine randomly
weighted CNN
architectures



  

Studied back-ends: SVM and ELM classifiers

SVM: support 
vector machine

ELM: extreme 
learning machine



  

The deep learning pipeline: output

input outputfront-end classifier

waveform

log-mel
spectrogram

nine randomly
weighted CNN
architectures

SVM or ELM (music) audio
tagging



  

Random CNN features: fault-filtered GTZAN
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59.65 % (best random CNN) < 82.1 % (SOTA)



  

Random CNN features: Extended Ballroom
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89.82 % (best random CNN) < 93.7 % (SOTA)



  

Do you remember the temporal CNN?



  

Random CNN features: Urban Sound 8k
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70.74 % (best random CNN) < 73 % (SOTA)



  

Conclusions

● Main CNN front-ends for audio-classification where presented

● Spectrogram front-ends > waveform front-ends
● Waveform front-ends: sample-level >> frame-level many > frame-level
● Spectrogram front-ends: 7x86 > 7x96

● One can achieve reasonable results without using domain knowledge
● Domain knowledge intuitions are valid guides for designing CNN-based models
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