Randomly weighted CNNs for audio classification: a personal (re)view

Jordi Pons

jordipons.me – @jordiponsdotme

Music Technology Group Universitat Pompeu Fabra, Barcelona

Outline

CNN architectures for audio classification: a review

Randomly weighted CNNs: how these work in practice?

Acronyms

MLP: multi layer perceptron ≡ feed-forward neural network

RNN: recurrent neural network

LSTM: long-short term memory

CNN: convolutional neural network

BN: batch normalization

..the following slides assume you know these concepts!

Outline

CNN architectures for audio classification: a review

Randomly weighted CNNs: how these work in practice?

Which is our goal / task?

input machine learning output

waveform

or any audio representation!

deep learning model

phonetic transcription

(music) audio tagging

event detection

The deep learning pipeline

waveform

or any audio representation!

phonetic transcription

(music) audio tagging

event detection

The deep learning pipeline: input?

How to format the input (audio) data?

Waveform end-to-end learning

Time-frequency representation

e.g.: log-mel spectrogram

The deep learning pipeline: front-end?

based on	filters	input sig	input signal?	
domain knowledge?	config?	<u>waveform</u>	<u>spectrogram</u>	

CNN front-ends for audio classification

Waveform end-to-end learning

Sample-level

Time-frequency representation

e.g.: log-mel spectrogram

Small-rectangular filters

Domain knowledge to design CNN front-ends

Waveform end-to-end learning

Time-frequency representation

e.g.: log-mel spectrogram

Domain knowledge to design CNN front-ends

Waveform end-to-end learning

filter length: 512 window length? stride: 256 hop size?

frame-level

Time-frequency representation *e.g.*: log-mel spectrogram

Explicitly tailoring the CNN towards learning temporal *or* timbral cues

vertical or horizontal filters

based on	filters config?	input signal?	
domain knowledge?		<u>waveform</u>	<u>spectrogram</u>
no	minimal filter expression	sample-level 3x1 3x1 3x1 3x1	small-rectangular filters 3x3 3x3 3x3 3x3
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level	vertical OR horizontal or

DSP wisdom to design CNN front ends

Waveform end-to-end learning

Time-frequency representation

e.g.: log-mel spectrogram

Explicitly tailoring the CNN towards learning temporal *and* timbral cues

Frame-level (many shapes!)

Vertical and/or horizontal

based on	filters	input signal?		
domain knowledge?		<u>waveform</u>	<u>spectrogram</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	small-rectangular filters 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level	vertical <i>OR</i> horizontal or	
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level	vertical AND/OR horizontal	

CNN front-ends for audio classification

Sample-level: Lee et al., 2017 – Sample-level Deep Convolutional Neural Networks for Music Autotagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

Small-rectangular filters: Choi et al., 2016 – Automatic tagging using deep convolutional neural networks in Proceedings of the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 – End-to-end learning for music audio in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 – Learning multiscale features directly from waveforms in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 – Experimenting with musically motivated convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing

The deep learning pipeline: output

spectrogram

Attention?

(music) audio tagging

event detection

The deep learning pipeline: output

event detection

Outline

CNN architectures for audio classification: a review

Randomly weighted CNNs: how these work in practice?

ArXiv: https://arxiv.org/abs/1805.00237

Code: https://github.com/jordipons/elmarc

Methodology

On Random Weights and Unsupervised Feature Learning

Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng

Stanford University Stanford, CA 94305

{asaxe, pangwei, zhenghao, mbhand, bipins, ang}@cs.stanford.edu

Figure 5: Classification performance of random-weight networks vs pretrained and finetuned networks. Left: NORB-mono. Right: CIFAR-10-mono (Error bars represent a 95% confidence interval about the mean)

4 Fast architecture selection

When we plot the classification performance of random-weight architectures against trained-weight architectures, a distinctive trend emerges: we see that architectures which perform well with random weights also tend to perform well with pretrained and finetuned weights, and vice versa (Fig. 5). Intuitively, our analysis in Section 2 suggests that random-weight performance is not truly random but should correlate with the corresponding trained-weight performance, as both are linked to intrinsic properties of the architecture. Indeed, this happens in practice.

Methodology

Goal? Compare different (randomly weighted) architectures

Method? Features (embeddings of random CNN) + classifier

Compare classification accuracies when using different (randomly weighted) architectures

Data? Fault-filtered GTZAN, Extended Ballroom, UrbanSounds8k

Pipeline of our study: input?

waveform

log-mel spectrogram

(music) audio tagging

Pipeline of our study: front-end?

based on	f:laawa	input signal?		
domain knowledge?	filters ? config?	<u>waveform</u>	<u>spectrogram</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1		
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level (length: 512)		
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level (512, 256, 128, 64, 32)		

Architectural details: waveform models

Additional layer for the fame-level architectures to allow a fair comparison with the (deep) sample-level

based on	6 :14	input signal?		
domain knowledge?	filters config?	<u>waveform</u>	<u>spectrogram</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	small-rectangular filters: VGG 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level (length: 512)	7x96 7x86	
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level (512, 256, 128, 64, 32)	timbral temporal and/or	

Further details about the timbral + temporal

Musically motivated CNNs (Pons et al., 2016 – 2017)

based on	6 :14	input signal?		
domain knowledge?	filters config?	<u>waveform</u>	<u>spectrogram</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	small-rectangular filters: VGG 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level (length: 512)	7x96 7x86	
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level (512, 256, 128, 64, 32)	timbral temporal and/or	

The deep learning pipeline: back-end?

Studied back-ends: SVM and ELM classifiers

SVM: support vector machine

ELM: extreme learning machine

The deep learning pipeline: output

Random CNN features: fault-filtered GTZAN

59.65 % (best random CNN) < 82.1 % (SOTA)

Random CNN features: Extended Ballroom

89.82 % (best random CNN) < 93.7 % (SOTA)

Do you remember the temporal CNN?

Random CNN features: Urban Sound 8k

70.74 % (best random CNN) < 73 % (SOTA)

Conclusions

- Main CNN front-ends for audio-classification where presented
- Spectrogram front-ends > waveform front-ends
- Waveform front-ends: sample-level >> frame-level many > frame-level
- Spectrogram front-ends: 7x86 > 7x96
- One can achieve reasonable results without using domain knowledge
- Domain knowledge intuitions are valid guides for designing CNN-based models

Randomly weighted CNNs for audio classification: a personal (re)view

Jordi Pons

jordipons.me – @jordiponsdotme

Music Technology Group Universitat Pompeu Fabra, Barcelona