Deep learning for music data processing A personal (re)view of the state-of-the-art

Jordi Pons

www.jordipons.me

Music Technology Group, DTIC, Universitat Pompeu Fabra, Barcelona.

31st January 2017

What problems do we care about in music technology research?

- (Automatically) cataloging large-scale music collections.
- Music recommendation.
- Similarity ie. Shanzam.
- Synthesis: instruments, singing voice.
- ..

Some of them can be approached with **deep learning**.

Why deep learning might be useful for music data processing?

- Music is hierarchic in frequency (note, chord) and time (onset, rhythm) and deep learning naturally allows this representation.
- Contextual analysis
 - Short time-scale features: CNNs ie. note, chords.
 - Long time-scale features: RNNs ie. structure.
- Unsupervised learning: potential of learning from any audio!
- Time/frequency invariant operations: max-pool.
- Any input: spectrogram, MFCCs, self-similarity matrices, video, text.

Acronyms:

- RNN: recurrent neural network.
- LSTM: long-short term memory.
- CNN: convolutional neural network.

Assumed notion of *deep learning*:

- It is <u>deep</u> when several non-linearities are applied to the input.
- The parameters of the network are <u>learnt</u>:
 - → typically by using **back-propagation**.

Chronology: the big picture

Some papers as examples for discussion

Current trends and research directions

Chronology: the big picture

Some papers as examples for discussion

Current trends and research directions

Approximate distribution: deep learning papers for music data processing over the years

Approximate distribution: deep learning papers for music data processing over the years

Used for:

- Classification: genre, artist, singing-voice detection, music-speech. Pons et al., Lidy et al.
- Auto-tagging. Dieleman et al., Choi et al.
- Key estimation. Humphrey et al., Korzeniowski et al.
- Feature extraction (unsupervised). Hamel et al., Lee et al.
- Music similarity estimation. Schlüter et al.
- Music recommendation. Aäron van den Oord et al.
- Onset/boundary detection. Böck et al., Durand et al.
- Source separation. Huang et al., Miron et al.
- Singing voice **synthesis**. Blaauw et al.

Chronology: the big picture

Some papers as examples for discussion

Current trends and research directions

LSTMs for automatic music composition with symbolic data

Eck and Schmidhuber. Learning The Long-Term Structure of the Blues. ICANN'02
"..compositions are quite pleasant"

Fig. 1. Bebop-style blues chords used for training data (transposed up one octave).

Fig. 2. Pentatonic scale used for training data melodies.

Some **examples** of **music composed** by LSTMs:

- Bob Sturm plays: The Mal's Copporim.
- 2 LSTMetallica: Drums from Metallica. Choi et al.
- STM Realbook: Generation of Jazz chord progressions.

CNNs interpretation and filter shapes discussion

S. Dieleman. http://benanne.github.io/2014/08/05/spotify-cnns.html

- Content-based music recommendation @ Spotify.
- CNN is learning (music) hierarchical features:
 - L1 Vibrato, vocal thirds, bass drums, A/Bb pitch, A/Am chord.
 - L3 Christian rock, Chinese pop, 8-bit, multimodal.

Lee et al. Unsupervised feature learning for audio classification using convolutional deep belief networks. NIPS'09

Visualization of some randomly selected first-layer convolutional filters trained with **music**.

Lee et al. Unsupervised feature learning for audio classification using convolutional deep belief networks. NIPS'09

Visualization of the four different phonemes and their corresponding first-layer convolutional filters trained with **speech**.

Choi et al. Explaining Deep CNNs on Music Classification. arXiv:1607.02444

Figure: Filters of the first CNN layer trained for genre classification

Layer 1 : onsets.

Layer 2: onsets, bass, harmonics, melody.

Layer 3: onsets, melody, kick, percussion.

Layer 4: harmonic structures, notes, vertical-horizontal lines.

Layer 5: textures, harmo-rhythmic patterns.

3x3 filters are **limiting** the representational power of the 1st layer! Does it make sense then to use **computer vision** architectures?

as in: Hershey et al. CNN architectures for large-scale audio classification. ICASSP'17

Pons et al. Experimenting with musically motivated CNNs. CBMI'16

Squared/rectangular filters (m-by-n):

• kick, notes: $m \ll M$ and $n \ll N$

Temporal filters (1-by-n):

• onsets, patterns. ...very <u>efficient!</u>

Frequency filters (m-by-1):

• timbre, chords. ...interpretable!

Pons et al. Experimenting with musically motivated CNNs. CBMI'16

Pons & Serra. Designing efficient architectures for modeling temporal features with CNNs. ICASSP'17

in collaboration with Thomas Lidy: CNNs (12x8, 1x80, 40x1)

white > black

Source Separation

Po-Sen Huang et al. Singing-Voice Separation from Monaural Recordings using Deep

3 deep layers (2nd recurrent) estimating 2 sources simultaneously.

Joint modelling of DRNN + mask with a discriminative cost.

Chandna et al. Monoaural audio source separation using deep convolutional neural networks. LVA-ICA'17

Presented to Signal Separation Evaluation Campaign 2017.

End-to-end learning

S. Dieleman and B. Schrauwen. End-to-end learning for music audio. ICASSP'14

Learning frequency selective filters similar to MEL filter bank.

Aäron van den Oord et al. Wavenet: A generative model for raw audio. arXiv:1609.03499 (2016)

Generative model for speech and music audio.

Chronology: the big picture

Some papers as examples for discussion

Current trends and research directions

- Lack of <u>annotated data</u>.
- Lack of <u>hardware</u> (GPUs) → Expertise goes to the industry.

- Lack of <u>annotated data</u>.
- Lack of <u>hardware</u> (GPUs) \rightarrow Expertise goes to the industry.

Trends for solving the issue of annotated data:

- Collaborative effort for jointly annotating music data.
- Artificial augmentation of the annotated data.

- Lack of <u>annotated data</u>.
- Lack of <u>hardware</u> (GPUs) → Expertise goes to the industry.

Trends for solving the issue of annotated data:

- Collaborative effort for jointly annotating music data.
- Artificial augmentation of the annotated data.

Trends for solving hardware limitations:

- Researchers avoid end-to-end learning approaches:
 - Inputting hand-crafted features to deep networks.
 - Using non deep learning classifiers/models stacked on top of deep learning feature extractors.
- Constraining the solution space considering prior information: music nature or human audio perception.

- Lack of <u>annotated data</u>.
- Lack of <u>hardware</u> (GPUs) \rightarrow Expertise goes to the industry.

Trends for solving the issue of <u>annotated data</u>:

- Collaborative effort for **jointly annotating music data**.
- Artificial augmentation of the annotated data.

Trends for solving <u>hardware</u> limitations:

- Researchers avoid end-to-end learning approaches:
 - Inputting hand-crafted features to deep networks.
 - Using non deep learning classifiers/models stacked on top of deep learning feature extractors.
- Constraining the solution space considering prior information: music nature or human audio perception.

References @ jordipons.me/lack-of-annotated-music-data-restrict-the-solution-space/

Imaginable research directions?

End-to-end learning from raw audio.

Aytar et al. SoundNet: Learning Sound Representations from Unlabeled Video. @ NIPS'16

Multimodal deep processing.

Slizovskaia et al. Automatic musical instrument recognition in audiovisual recordings by combining image and audio classification strategies.

@ SMC'16

Unsupervised learning such as generative models.

Aaron van den Oord et al. Wavenet: A generative model for raw audio.

@ arXiv:1609.03499 (2016)

Efficient learning long-term dependencies.

Eck and Schmidhuber. Learning The Long-Term Structure of the Blues.

@ICANN02

@ CBMI'16

• Understanding which features are learnt.

Pons et al. Experimenting with musically motivated convolutional NNs.

Deep learning for music data processing A personal (re)view of the state-of-the-art

Jordi Pons

www.jordipons.me

Music Technology Group, DTIC, Universitat Pompeu Fabra, Barcelona.

31st January 2017

