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What problems do we care about in music technology research?

• (Automatically) cataloging large-scale music collections.

• Music recommendation.

• Similarity – ie. Shanzam.

• Synthesis: instruments, singing voice.

• ...

Some of them can be approached with deep learning.
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Why deep learning might be useful for music data processing?

• Music is hierarchic in frequency (note, chord) and time (onset,
rhythm) and deep learning naturally allows this representation.

• Contextual analysis
• Short time-scale features: CNNs - ie. note, chords.
• Long time-scale features: RNNs - ie. structure.

• Unsupervised learning: potential of learning from any audio!

• Time/frequency invariant operations: max-pool.

• Any input: spectrogram, MFCCs, self-similarity matrices,
video, text.
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Acronyms:

• MLP: multi layer perceptron ≡ feed-forward neural network.

• RNN: recurrent neural network.

• LSTM: long-short term memory.

• CNN: convolutional neural network.

Assumed notion of deep learning :

• It is deep when several non-linearities are applied to the
input.

• The parameters of the network are learnt:
→ typically by using back-propagation.
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Used for:

• Classification: genre, artist, singing-voice detection,
music-speech. Pons et al., Lidy et al.

• Auto-tagging. Dieleman et al., Choi et al.

• Key estimation. Humphrey et al., Korzeniowski et al.

• Feature extraction (unsupervised). Hamel et al., Lee et al.

• Music similarity estimation. Schlüter et al.

• Music recommendation. Aäron van den Oord et al.

• Onset/boundary detection. Böck et al., Durand et al.

• Source separation. Huang et al., Miron et al.

• Singing voice synthesis. Blaauw et al.
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LSTMs for automatic music composition with symbolic data

Eck and Schmidhuber. Learning The Long-Term Structure of the Blues. ICANN’02

“..compositions are quite pleasant”

Some examples of music composed by LSTMs:

1 Bob Sturm plays: The Mal’s Copporim.

2 LSTMetallica: Drums from Metallica. Choi et al.

3 LSTM Realbook: Generation of Jazz chord progressions.
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CNNs interpretation and filter shapes discussion

S. Dieleman. http://benanne.github.io/2014/08/05/spotify-cnns.html

• Content-based music recommendation @ Spotify.
• CNN is learning (music) hierarchical features:

L1 Vibrato, vocal thirds, bass drums, A/Bb pitch, A/Am chord.
L3 Christian rock, Chinese pop, 8-bit, multimodal.
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Lee et al. Unsupervised feature learning for audio classification using convolutional
deep belief networks. NIPS’09

Visualization of some randomly selected
first-layer convolutional filters trained with music.
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Lee et al. Unsupervised feature learning for audio classification using convolutional
deep belief networks. NIPS’09

Visualization of the four different phonemes and their
corresponding first-layer convolutional filters trained with speech.
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Choi et al. Explaining Deep CNNs on Music Classification. arXiv:1607.02444

Figure : Filters of the first CNN layer trained for genre classification

Layer 1 : onsets.

Layer 2 : onsets, bass, harmonics, melody.

Layer 3 : onsets, melody, kick, percussion.

Layer 4 : harmonic structures, notes, vertical-horizontal lines.

Layer 5 : textures, harmo-rhythmic patterns.

3x3 filters are limiting the representational power of the 1st layer!

Does it make sense then to use computer vision architectures?
as in: Hershey et al. CNN architectures for large-scale audio classification. ICASSP’17
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Pons et al. Experimenting with musically motivated CNNs. CBMI’16

Squared/rectangular filters (m-by-n):

• kick, notes: m� M and n� N

Temporal filters (1-by-n):

• onsets, patterns. ...very efficient!

Frequency filters (m-by-1):

• timbre, chords. ...interpretable!
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Pons et al. Experimenting with musically motivated CNNs. CBMI’16

Pons & Serra. Designing efficient architectures for modeling

temporal features with CNNs. ICASSP’17
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in collaboration with Thomas Lidy: CNNs (12x8, 1x80, 40x1)

white > black
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Source Separation
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Po-Sen Huang et al. Singing-Voice Separation from Monaural Recordings using Deep

Recurrent Neural Networks ISMIR’14

3 deep layers (2nd recurrent) estimating 2 sources simultaneously.
Joint modelling of DRNN + mask with a discriminative cost.
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Chandna et al. Monoaural audio source separation using deep

convolutional neural networks. LVA-ICA’17

Presented to Signal Separation Evaluation Campaign 2017.
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End-to-end learning

S. Dieleman and B. Schrauwen. End-to-end learning for music audio. ICASSP’14

Learning frequency selective filters similar to MEL filter bank.
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Aäron van den Oord et al. Wavenet: A generative model for raw audio.

arXiv:1609.03499 (2016)

Generative model for speech and music audio.
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Limitations the academic music technology community is
facing when approaching their problems with deep learning:

• Lack of annotated data.

• Lack of hardware (GPUs) → Expertise goes to the industry.

Trends for solving the issue of annotated data:

• Collaborative effort for jointly annotating music data.

• Artificial augmentation of the annotated data.

Trends for solving hardware limitations:

• Researchers avoid end-to-end learning approaches:
• Inputting hand-crafted features to deep networks.
• Using non deep learning classifiers/models stacked on top of

deep learning feature extractors.

• Constraining the solution space considering prior
information: music nature or human audio perception.

References @ jordipons.me/lack-of-annotated-music-data-restrict-the-solution-space/
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Imaginable research directions?

• End-to-end learning from raw audio.
Aytar et al. SoundNet: Learning Sound Representations from Unlabeled Video.

@ NIPS’16

• Multimodal deep processing.
Slizovskaia et al. Automatic musical instrument recognition in audiovisual
recordings by combining image and audio classification strategies.

@ SMC’16

• Unsupervised learning such as generative models.
Aaron van den Oord et al. Wavenet: A generative model for raw audio.

@ arXiv:1609.03499 (2016)

• Efficient learning long-term dependencies.
Eck and Schmidhuber. Learning The Long-Term Structure of the Blues.

@ICANN02

• Understanding which features are learnt.
Pons et al. Experimenting with musically motivated convolutional NNs.

@ CBMI’16
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