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Recurrent Neural Networks

Figure: Unfolded recurrent neural network

h(t) = σ(b+Wh(t−1) +Ux(t))

o(t) = c+ Vh(t)

Throughout this presentation we assume single layer RNNs!
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Recurrent Neural Networks

h(t) = σ(b+Wh(t−1) +Ux(t)) o(t) = c+ Vh(t)

I x ∈ IRdinx1 y ∈ IRdoutx1

I b ∈ IRdhx1 h ∈ IRdhx1

I U ∈ IRdhxdin W ∈ IRdhxdh

I V ∈ IRdoutxdh σ: element-wise non-linearity.

Where din, dh and dout correspond to the dimensions of the input
layer, hidden layer and output layer, respectively.
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Recurrent Neural Networks

Figure: Unfolded recurrent neural network
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Gradient vanish/explode: forward path

Figure: Forward and backward path for time-step t + 1 (yellow).

Jordi Pons Tutorial on recurrent neural networks



7/37

The problem: gradient vanish/explode One possible solution: gated units (LSTM & GRU) Other solutions

Gradient vanish/explode: problematic path

Figure: Problematic path (red).
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Intuition from the forward linear case
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Intuition from the forward linear case

I Study case: forward problematic path for the linear case.
h(t) = σ(b+Wh(t−1) +Ux(t)) → h(t) = Wh(t−1)

I After t steps, this is equivalent to multiply Wt .
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Intuition from the forward linear case

h(t) = W h(t−1) → h(t) = Wt h(0)

if W < 1: h(t) will tend to 0 (will “vanish").
if W > 1: h(t) will tend to ∞ (will “explode").
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Gradient vanish/explode: back-propagation with non-linearities
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Gradient vanish/explode: back-propagation with non-linearities

→ Consider the backward pass when non-linearities are present.
→ This will allow to explicitly describe the gradients issue.

∂L
∂W

=
∂L
(
o(t+1), y(t+1))

∂W
+
∂L
(
o(t), y(t)

)
∂W

+
∂L
(
o(t−1), y(t−1)

)
∂W

=

=
tmax∑

S=tmin

∂L
(
o(t−k), y(t−k)

)
∂W

where S ∈ [tmin, tmax ] → S being the horizon of the BPTT alghoritm.
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Gradient vanish/explode: back-propagation with non-linearities

Let’s now focus on time-step t + 1:

∂L
(
o(t+1), y(t+1))

∂W
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Gradient vanish/explode: back-propagation with non-linearities

∂L
(
o(t+1), y(t+1))

∂W
=
∂L
(
o(t+1), y(t+1))
∂o(t+1)

∂o(t+1)

∂h(t+1)
∂h(t+1)

∂W
+

+
∂L
(
o(t+1), y(t+1))
∂o(t+1)

∂o(t+1)

∂h(t+1)
∂h(t+1)

∂h(t)
∂h(t)

∂W
+

+
∂L
(
o(t+1), y(t+1))
∂o(t+1)

∂o(t+1)

∂h(t+1)
∂h(t+1)

∂h(t)
∂h(t)

∂h(t−1)
∂h(t−1)

∂W
+...
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Gradient vanish/explode: back-propagation with non-linearities

Previous equation can be summarized as follows:

∂L
(
o(t+1), y(t+1))

∂W
=

=
1∑

k=tmin

∂L
(
o(t+1), y(t+1))
∂o(t+1)

∂o(t+1)

∂h(t+1)
∂h(t+1)

∂h(t+k)

∂h(t+k)

∂W

where:

∂h(t+1)

∂h(t+k)
=

1∏
s=k+1

∂h(t+s)

∂h(t+s−1) =
1∏

s=k+1

WT diag [σ′(b+W h(t+s−1)+Ux(t+s))]

h(t+s) = σ(b+Wh(t+s−1) +Ux(t+s))

f (x) = h(g(x))→ f ′(x) = h′(g(x)) · g ′(x)
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Gradient vanish/explode: back-propagation with non-linearities

∂h(t+1)

∂h(t+k)
=

1∏
s=k+1

∂h(t+s)

∂h(t+s−1) =
1∏

s=k+1

WT diag [σ′(b+W h(t+s−1)+Ux(t+s))]

the L2 norm defines an upper bound for the jacobians:∥∥∥∥∥ ∂h(t+s)

∂h(t+s−1)

∥∥∥∥∥
2

≤
∥∥∥WT

∥∥∥
2

∥∥diag [σ′(·)]∥∥2 ≡ γwγσ
→ γw ≡ L2 norm of a matrix. → γσ ∈ [0, 1].

≡ highest eigenvalue.
≡ spectral radius.

and therefore: ∥∥∥∥∥∂h(t+1)

∂h(t+k)

∥∥∥∥∥
2

≤ (γwγσ)
|k−1|
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Gradient vanish/explode: back-propagation with non-linearities

then, consider:
∥∥∥∂h(t+1)

∂h(t+k)

∥∥∥
2
≤ (γwγσ)

|k−1|

γwγσ � 1:
∥∥∥∥∂h(1)

(t)

∂h(1)
(k)

∥∥∥∥
2
→ ∂L(o(t+1), y(t+1))

∂W → ∂L
∂W explodes!

γwγσ � 1:
∥∥∥∥∂h(1)

(t)

∂h(1)
(k)

∥∥∥∥
2
→ ∂L(o(t+1), y(t+1))

∂W → ∂L
∂W vanishes!

γwγσ ≈ 1: gradients should propagate well until the past
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Gradient vanish/explode: take away message

→ Vanishing gradients make it difficult to know which direction
the parameters should move to improve the cost function.

→ While exploding gradients can make learning unstable.

→ The vanishing and exploding gradient problem refers to the
fact that gradients are scaled according to:∥∥∥∥∥∂h(t+1)

∂h(t+k)

∥∥∥∥∥
2

≤ (γwγσ)
|k−1| with, tipically : γσ ∈ [0, 1]
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Gradient vanish/explode in (regular) deep neural networks?
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Gradient vanish/explode in (regular) deep neural networks?

I Recurrent networks use the same matrix W at each time step.
I Feedforward networks do not use the same matrix W:
→ Very deep feedforward networks can avoid the
vanishing and exploding gradient problem.
→ if an appropriate scaling for W’s variance is chosen.
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Gated units: intuition

1. Accumulating is just a bad memory?
W = I and linear ∼= γwγσ = 1 · 1 = 1

RNNs can accumulate but it might be useful to forget.

2. Creating paths through time where derivatives can flow.

3. Learn when to forget!

Gates allow learning how to read, write and forget!

Two different gated units will be presented:

Long Short-Term Memory (LSTM)
Gated Recurrent Unit (GRU)
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LSTM – block diagram 1

Figure: Traditional LSTM diagram.
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LSTM – block diagram 2

Figure: LSTM diagram as in the Deep Learning Book.
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LSTM – block diagram 3

Figure: LSTM diagram as in colah.github.io

I Two recurrences!
→ Two past informations, through: W and direct.
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LSTM – formulation

Input : i (t) = θ(b + Ux (t) +Wh(t−1))

Gate : g
(t)
? = σ(b? + U?x

(t) +W?h
(t−1))

State : s(t) = g
(t)
f s(t−1) + g

(t)
i i (t)

Hidden : h(t) = θ(s(t))g
(t)
o

Output : o(t) = c + Vh(t)

Where for g (t)
? gate:

? can be f/i/o – standing for forget/input/output.

Gates use sigmoid nonlinearities: σ(·) ∈ [0, 1]
Input/output nonlinearities are typically a tanh(·)
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LSTM – block diagram 4

Figure: Simplified diagram – as in my mind.

Blue dots represent gates!
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GRU: Gated Recurrent Units

Which pieces of the LSTM architecture are actually necessary?

Vanilla RNN → h(t) = θ(b +Ux(t) +Wh(t−1))

LSTM → complex thing with s(t) = g
(t)
f s(t−1) + g

(t)
i i (t)

GRU → h(t) = g
(t−1)
u h(t−1)+(1−g (t−1)

u ) θ(b+Ux(t)+Wg
(t−1)
r h(t−1))

Where g
(t)
u /g (t)

r are update/reset gates.

Less computation and less number of parameters!
...via removing “intermediate state”, and sharing gates!

...while keeping the essence (and performance) of LSTMs!
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Hidden units with linear self-connections

Goal :

∥∥∥∥∥∂h(t+1)

∂h(t+k)

∥∥∥∥∥
2

≤ (γwγσ)
|k−1| ≈ 1

Proposal: linear units (γσ = 1) and weights near one (γw ≈ 1).

Examples of possible implementations:

I h(t) ← αh(t−1) + (1− α)x (t) (for a running average?)
I h(t) ← wh(t−1) + ux (t)

→ When w / α are ≈ 1, it remembers information from the past.
→ w / α can be fixed or learned.
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Echo State Networks

Only learn Wout . Keep Win and Wrec random!

I Easy: train can be a convex optimization problem.

I Difficult: set Win and Wrec .∥∥∥∥∥∂h(t+1)

∂h(t+k)

∥∥∥∥∥
2

≤ (γwγσ)
|k−1| with, tipically : γσ ∈ [0, 1]

then, set : γw ≈ 3
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Models to operate at multiple time scales

Adding skip connections through time
I Connections with a time-delay try to mitigate the gradient

vanish or explode problem.
I Gradients may still vanish/explode. For some intuition, think

about the problematic forward path: W t .
I Learn influenced by the past.

Removing connections
I Forcing to operate at longer (coarse) time dependencies.
I For some intuition, think about the problematic forward path:

W t where the t horizon is kept, without paying the cost of
doing all the multiplications.
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Removing connections to operate at longer time-scales

Figure: SampleRNN

Figure: Non-causal Wavenet
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Optimization strategies for RNNs: second order methods

Why don’t we improve the optimization by using
second order methods?

I These have high computational cost.
I Require a large mini-batch.
I Tendency to be attracted by saddle points.
I Simpler methods with careful initialization can achieve

similar results!

Research done during 2011-2013.
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Optimization strategies for RNNs: clipping gradients

Basic idea:

I To bound the gradient per minibatch.
I Avoids doing a detrimental step when the gradient explodes.

Introduces an heuristic bias that is known to be useful.
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Wrapping up..

The problem: gradient vanish/explode
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Other solutions
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..thanks! :)

Credit: most figures are from the Deep Learning Book .
It is also useful to see this video by Nando de Freitas.
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http://www.deeplearningbook.org/
https://youtu.be/56TYLaQN4N8
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