# Tutorial on recurrent neural networks

#### Jordi Pons

Researcher at Dolby Laboratories @jordiponsdotme – www.jordipons.me

Master in Sound and Music Computing Universitat Pompeu Fabra, Winter 2019 The problem: gradient vanish/explode

One possible solution: gated units (LSTM & GRU)

Other solutions

#### Recurrent Neural Networks



Figure: Unfolded recurrent neural network

$$\mathbf{h}^{(t)} = \sigma(\mathbf{b} + \mathbf{W} \, \mathbf{h}^{(t-1)} + \mathbf{U} \mathbf{x}^{(t)})$$
$$\mathbf{o}^{(t)} = \mathbf{c} + \mathbf{V} \mathbf{h}^{(t)}$$

Throughout this presentation we assume single layer RNNs!

#### Recurrent Neural Networks

$$\mathsf{h}^{(t)} = \sigma(\mathsf{b} + \mathsf{W}\,\mathsf{h}^{(t-1)} + \mathsf{U}\mathsf{x}^{(t)})$$

$$\mathbf{o}^{(t)} = \mathbf{c} + \mathbf{V}\mathbf{h}^{(t)}$$

$$\mathbf{x} \in \mathbb{R}^{d_{in} \times 1}$$

$$ightharpoonup$$
  $\mathbf{b} \in \mathbb{R}^{d_h \times 1}$ 

$$ightharpoonup U \in \mathbb{R}^{d_h \times d_{in}}$$

$$\mathbf{V} \in \mathbb{R}^{d_{out} \times d_h}$$

$$\mathbf{y} \in 
eals^{d_{out} imes 1}$$

$$\mathbf{h} \in \mathbb{R}^{d_h \times 1}$$

$$\mathbf{W} \in \mathbb{R}^{d_h \times d_h}$$

 $\sigma$ : element-wise non-linearity.

Where  $d_{in}$ ,  $d_h$  and  $d_{out}$  correspond to the dimensions of the input layer, hidden layer and output layer, respectively.

## Recurrent Neural Networks



Figure: Unfolded recurrent neural network

## Gradient vanish/explode: forward path



**Figure:** Forward and backward path for time-step t + 1 (yellow).

# Gradient vanish/explode: problematic path



Figure: Problematic path (red).

## Intuition from the forward linear case

#### Intuition from the forward linear case



- Study case: forward problematic path for the linear case.  $\mathbf{h}^{(t)} = \sigma(\mathbf{b} + \mathbf{W} \mathbf{h}^{(t-1)} + \mathbf{U} \mathbf{x}^{(t)}) \rightarrow \mathbf{h}^{(t)} = \mathbf{W} \mathbf{h}^{(t-1)}$
- $\triangleright$  After t steps, this is equivalent to multiply  $\mathbf{W}^t$ .

#### Intuition from the forward linear case



$$\mathbf{h}^{(t)} = \mathbf{W} \ \mathbf{h}^{(t-1)} \ \ 
ightarrow \ \ \mathbf{h}^{(t)} = \mathbf{W}^t \ \mathbf{h}^{(0)}$$

if W < 1:  $h^{(t)}$  will tend to 0 (will "vanish").

if W > 1:  $h^{(t)}$  will tend to  $\infty$  (will "explode").

- → Consider the backward pass when non-linearities are present.
- $\rightarrow$  This will allow to explicitly describe the **gradients** issue.



$$\begin{split} \frac{\partial \mathsf{L}}{\partial \mathsf{W}} &= \frac{\partial L\left(\mathsf{o}^{(t+1)},\,\, \mathsf{y}^{(t+1)}\right)}{\partial \mathsf{W}} + \frac{\partial L\left(\mathsf{o}^{(t)},\,\, \mathsf{y}^{(t)}\right)}{\partial \mathsf{W}} + \frac{\partial L\left(\mathsf{o}^{(t-1)},\,\, \mathsf{y}^{(t-1)}\right)}{\partial \mathsf{W}} = \\ &= \sum_{k=0}^{t_{max}} \frac{\partial L\left(\mathsf{o}^{(t-k)},\,\, \mathsf{y}^{(t-k)}\right)}{\partial \mathsf{W}} \end{split}$$

where  $S \in [t_{min}, t_{max}] \rightarrow S$  being the horizon of the BPTT alghoritm.

Let's now focus on time-step t+1:

$$\frac{\partial L\left(\mathbf{o}^{(t+1)},\,\mathbf{y}^{(t+1)}\right)}{\partial \mathbf{W}}$$





$$\begin{split} \frac{\partial L\left(\mathbf{o}^{(t+1)},\,\mathbf{y}^{(t+1)}\right)}{\partial \mathbf{W}} &= \frac{\partial L\left(\mathbf{o}^{(t+1)},\,\mathbf{y}^{(t+1)}\right)}{\partial \mathbf{o}^{(t+1)}} \frac{\partial \mathbf{o}^{(t+1)}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{W}} + \\ &+ \frac{\partial L\left(\mathbf{o}^{(t+1)},\,\mathbf{y}^{(t+1)}\right)}{\partial \mathbf{o}^{(t+1)}} \frac{\partial \mathbf{o}^{(t+1)}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t)}} \frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{W}} + \\ &+ \frac{\partial L\left(\mathbf{o}^{(t+1)},\,\mathbf{y}^{(t+1)}\right)}{\partial \mathbf{o}^{(t+1)}} \frac{\partial \mathbf{o}^{(t+1)}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t)}} \frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(t-1)}} \frac{\partial \mathbf{h}^{(t-1)}}{\partial \mathbf{W}} + \dots \end{split}$$

Previous equation can be summarized as follows:

$$\frac{\partial L\left(\mathbf{o}^{(t+1)}, \mathbf{y}^{(t+1)}\right)}{\partial \mathbf{W}} =$$

$$= \sum_{k=t, \text{min}}^{1} \frac{\partial L\left(\mathbf{o}^{(t+1)}, \mathbf{y}^{(t+1)}\right)}{\partial \mathbf{o}^{(t+1)}} \frac{\partial \mathbf{o}^{(t+1)}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} \frac{\partial \mathbf{h}^{(t+k)}}{\partial \mathbf{W}}$$

where:

$$\frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} = \prod_{s=k+1}^{1} \frac{\partial \mathbf{h}^{(t+s)}}{\partial \mathbf{h}^{(t+s-1)}} = \prod_{s=k+1}^{1} \mathbf{W}^{T} \operatorname{diag}[\sigma'(\mathbf{b} + \mathbf{W} \mathbf{h}^{(t+s-1)} + \mathbf{U} \mathbf{x}^{(t+s)})]$$

$$\mathbf{h}^{(t+s)} = \sigma(\mathbf{b} + \mathbf{W} \mathbf{h}^{(t+s-1)} + \mathbf{U} \mathbf{x}^{(t+s)})$$

$$f(x) = h(g(x)) \to f'(x) = h'(g(x)) \cdot g'(x)$$

$$\frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} = \prod_{s=k+1}^{1} \frac{\partial \mathbf{h}^{(t+s)}}{\partial \mathbf{h}^{(t+s-1)}} = \prod_{s=k+1}^{1} \mathbf{W}^{T} \operatorname{diag}[\sigma'(\mathbf{b} + \mathbf{W} \mathbf{h}^{(t+s-1)} + \mathbf{U} \mathbf{x}^{(t+s)})]$$

the L2 norm defines an upper bound for the jacobians:

$$\begin{split} & \left\| \frac{\partial \mathbf{h}^{(t+s)}}{\partial \mathbf{h}^{(t+s-1)}} \right\|_2 \leq \left\| \mathbf{W}^T \right\|_2 \left\| \operatorname{diag}[\, \sigma'(\cdot)] \right\|_2 \equiv \gamma_w \gamma_\sigma \\ & \to \gamma_w \equiv \mathsf{L2} \text{ norm of a matrix.} \qquad \to \gamma_\sigma \in [0,1]. \\ & \equiv \text{highest eigenvalue.} \\ & \equiv \text{spectral radius.} \end{split}$$

and therefore:

$$\left\| \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} \right\|_{2} \leq (\gamma_{w} \gamma_{\sigma})^{|k-1|}$$

then, consider: 
$$\left\| \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} \right\|_2 \leq (\gamma_w \gamma_\sigma)^{|k-1|}$$

$$\gamma_w \gamma_\sigma \gg 1$$
:  $\left\| \frac{\partial \mathbf{h}_{(t)}^{(1)}}{\partial \mathbf{h}_{(k)}^{(1)}} \right\|_2 \to \frac{\partial L(\mathbf{o}^{(t+1)}, \mathbf{y}^{(t+1)})}{\partial \mathbf{W}} \to \frac{\partial L}{\partial \mathbf{W}}$  explodes!

$$\gamma_w \gamma_\sigma \ll 1$$
:  $\left\| \frac{\partial \mathbf{h}_{(t)}^{(1)}}{\partial \mathbf{h}_{(k)}^{(1)}} \right\|_2 o \frac{\partial L \left( \mathbf{o}^{(t+1)}, \mathbf{y}^{(t+1)} \right)}{\partial \mathbf{W}} o \frac{\partial L}{\partial \mathbf{W}}$  vanishes!

 $\gamma_w \gamma_\sigma \approx 1$ : gradients should propagate well until the past

# Gradient vanish/explode: take away message

- ightarrow Vanishing gradients make it difficult to know which direction the parameters should move to improve the cost function.
- $\rightarrow$  While **exploding** gradients can make learning unstable.
- ightarrow The vanishing and exploding gradient problem refers to the fact that gradients are scaled according to:

$$\left\| \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} \right\|_{2} \leq (\gamma_{w} \gamma_{\sigma})^{|k-1|} \quad \text{with, tipically } : \gamma_{\sigma} \in [0,1]$$

# Gradient vanish/explode in (regular) deep neural networks?

## Gradient vanish/explode in (regular) deep neural networks?



- ► Recurrent networks use the <u>same</u> matrix **W** at each time step.
- Feedforward networks do not use the same matrix **W**:
  - → Very deep feedforward networks can avoid the vanishing and exploding gradient problem.
  - $\rightarrow$  if an appropriate scaling for W's variance is chosen.

The problem: gradient vanish/explode

One possible solution: gated units (LSTM & GRU)

Other solutions

## Gated units: intuition

1. Accumulating is just a bad memory?

$$W = I$$
 and  $linear \cong \gamma_w \gamma_\sigma = 1 \cdot 1 = 1$   
RNNs can *accumulate* but it might be useful to *forget*.

- 2. Creating paths through time where derivatives can flow.
- 3. Learn when to forget!

Gates allow learning how to read, write and forget!

Two different gated units will be presented:

Long Short-Term Memory (LSTM)
Gated Recurrent Unit (GRU)



Figure: Traditional LSTM diagram.



Figure: LSTM diagram as in the Deep Learning Book.



Figure: LSTM diagram as in colah.github.io

- Two recurrences!
  - $\rightarrow$  Two past informations, through: **W** and direct.

## LSTM - formulation

Input: 
$$i^{(t)} = \theta(b + Ux^{(t)} + Wh^{(t-1)})$$
  
Gate:  $g_{?}^{(t)} = \sigma(b_{?} + U_{?}x^{(t)} + W_{?}h^{(t-1)})$   
State:  $s^{(t)} = g_{f}^{(t)}s^{(t-1)} + g_{i}^{(t)}i^{(t)}$   
Hidden:  $h^{(t)} = \theta(s^{(t)})g_{o}^{(t)}$   
Output:  $o^{(t)} = c + Vh^{(t)}$ 

Where for  $g_7^{(t)}$  gate:

? can be f/i/o – standing for forget/input/output.

Gates use sigmoid nonlinearities:  $\sigma(\cdot) \in [0,1]$ Input/output nonlinearities are typically a  $tanh(\cdot)$ 



Figure: Simplified diagram - as in my mind.

Blue dots represent gates!

#### **GRU: Gated Recurrent Units**

Which pieces of the LSTM architecture are actually necessary?

$$\label{eq:Vanilla} \begin{split} \textit{Vanilla RNN} & \rightarrow \textit{h}^{(t)} = \theta(\textit{b} + \textit{Ux}^{(t)} + \textit{Wh}^{(t-1)}) \\ \textit{LSTM} & \rightarrow \textit{complex thing with } \textit{s}^{(t)} = \textit{g}_\textit{f}^{(t)} \textit{s}^{(t-1)} + \textit{g}_\textit{i}^{(t)} \textit{i}^{(t)} \end{split}$$

$$GRU \rightarrow h^{(t)} = g_u^{(t-1)} h^{(t-1)} + (1-g_u^{(t-1)}) \theta(b + \mathbf{U} \mathbf{x}^{(t)} + \mathbf{W} g_r^{(t-1)} \mathbf{h}^{(t-1)})$$
  
Where  $g_u^{(t)}/g_r^{(t)}$  are **update/reset** gates.

Less computation and less number of parameters! ...via removing "intermediate state", and sharing gates! ...while keeping the essence (and performance) of LSTMs!

The problem: gradient vanish/explode

One possible solution: gated units (LSTM & GRU)

Other solutions

## Hidden units with linear self-connections

Goal: 
$$\left\| \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} \right\|_2 \le (\gamma_w \gamma_\sigma)^{|k-1|} \approx 1$$

Proposal: linear units  $(\gamma_{\sigma} = 1)$  and weights near one  $(\gamma_{w} \approx 1)$ .

Examples of possible implementations:

- $h^{(t)} \leftarrow \alpha h^{(t-1)} + (1-\alpha)x^{(t)}$  (for a running average?)
- $h^{(t)} \leftarrow wh^{(t-1)} + ux^{(t)}$
- $\rightarrow$  When w /  $\alpha$  are  $\approx$  1, it remembers information from the past.
- $\rightarrow w / \alpha$  can be fixed or learned.

#### Echo State Networks

Only learn  $W_{out}$ . Keep  $W_{in}$  and  $W_{rec}$  random!



- **Easy**: train can be a convex optimization problem.
- **Difficult**: set  $W_{in}$  and  $W_{rec}$ .

$$\left\| \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t+k)}} \right\|_{2} \leq (\gamma_{w} \gamma_{\sigma})^{|k-1|} \quad \text{with, tipically } : \gamma_{\sigma} \in [0,1]$$

then, set :  $\gamma_w \approx 3$ 

## Models to operate at multiple time scales

## Adding skip connections through time

- Connections with a time-delay try to mitigate the gradient vanish or explode problem.
- ▶ Gradients may still vanish/explode. For some intuition, think about the *problematic* forward path:  $W^t$ .
- Learn influenced by the past.

# Removing connections

- ► Forcing to operate at longer (coarse) time dependencies.
- ► For some intuition, think about the problematic forward path: W<sup>t</sup> where the t horizon is kept, without paying the cost of doing all the multiplications.

## Removing connections to operate at longer time-scales



Figure: SampleRNN



Figure: Non-causal Wavenet

# Optimization strategies for RNNs: second order methods

# Why don't we improve the optimization by using second order methods?

- These have high computational cost.
- Require a large mini-batch.
- ► Tendency to be attracted by saddle points.
- Simpler methods with careful initialization can achieve similar results!

Research done during 2011-2013.

# Optimization strategies for RNNs: clipping gradients



#### Basic idea:

- To bound the gradient per minibatch.
- Avoids doing a detrimental step when the **gradient explodes**.

Introduces an heuristic bias that is known to be useful.

# Wrapping up..

The problem: gradient vanish/explode

One possible solution: gated units (LSTM & GRU)

Other solutions

## ..thanks! :)

Credit: most figures are from the *Deep Learning Book*. It is also useful to see this *video* by Nando de Freitas.

## Tutorial on recurrent neural networks

## Jordi Pons

Researcher at Dolby Laboratories @jordiponsdotme – www.jordipons.me

Master in Sound and Music Computing Universitat Pompeu Fabra, Winter 2019