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Research question I

– Deep artificial neural networks can be a suitable tool for modeling 
music and audio computationally.

– Artificial neural networks were not widely used for music and 
audio. Hence, deep learning was still a promise to be explored and 
it was not clear how researchers would adopt it.

Which deep learning architectures are 
most appropriate for (music) audio signals?
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Research question II

– It exists an end-to-end learning trend among deep learning 
researchers, who are exploring the possibilities of this approach.

– “End-to-end learning for audio is an impossible endeavor”. It 
existed the idea that for end-to-end learning to be viable, much 
more computing power and training data were required.

In which scenarios is waveform-based 
end-to-end learning feasible?
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Research question III

– Artificial neural networks require a significant amount of data to 
be competitive.

How much data is required for carrying out 
competitive deep learning research?
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Which deep learning architectures are most appropriate for (music) audio signals?

In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

● Musically Motivated CNNs for music tagging (Chapter III)

● Non-trained CNNs for music and audio tagging (Chapter IV)

● Music tagging at scale (Chapter V)

● Audio tagging with few training data (Chapter VI)

● Conclusions (Chapter VII)
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Spectrograms are not images
– No special meaning
– Vertical axis: frequency
– Horizontal axis: time

Most researchers use computer vision architectures
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AlexNet (Krizhevsky, 2012)

Most researchers use computer vision architectures
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Spectrogram input

M=40 mel bands

N= 80 frames (1.85 sec)

CNN filter shape

m=12 mel bands

n=8 frames (0.18 sec)

Most researchers use computer vision architectures
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Musically Motivated CNNs
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Musically Motivated CNNs
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Musically Motivated CNNs

● Discuss the importance of the CNN filter 
shapes

● Explore vertical or horitzontal CNN filter 
shapes in the first layer

● Show that can perform similarly with an 
order of magnitude less number of 
learnable parameters
– Task: classify rhythm classes
– Performance: ≈ 87% accuracy

Pons, Lidy & Serra. Experimenting with musically motivated convolutional neural networks. CBMI2016.
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TemporalCNN: 
many horizontal filters

● Investigate using many different 
filters in the same layer 

● Show that can perform the same with 
an extra order of magnitude less 
number of trainable parameters
– Task: classify rhythm classes

– Improve from ≈ 87% to ≈ 92% accuracy
Pons & Serra. Designing efficient architectures for modeling temporal features with convolutional neural networks. ICASSP2017.
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TimbreCNN: 
many vertical filters

● Pitch invariant filters: vertical convolution
● Show that can perform the same (if not 

better) with an order of magnitude less 
number of trainable parameters
– Task I: Singing voice phoneme classification
– Task II: Musical instrument recognition
– Task III: Music tagging

Pons, Slizovskaia, Gong, Gómez & Serra. Timbre Analysis of Music Audio Signals with Convolutional Neural Networks. EUSIPCO2017.



19

A novel design strategy for music CNNs

(t, # vertical filters)

(t, # horizontal filters)

(t, # horizontal filters + # vertical filters)
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How our work contributes to the state-of-the-art?
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input front-end

waveform

spectrogram
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How our work contributes to the state-of-the-art?
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Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

Sample-level VGG
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Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram
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Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram

frame-level vertical or horizontal filters

filter length: 512    window length?
stride: 256                       hop size?

Explicitly tailoring the CNN towards
 learning temporal or timbral cues
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Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram

Frame-level (many shapes!) Vertical and/or horizontal

Explicitly tailoring the CNN towards
 learning temporal and timbral cues

Efficient way 
to represent 
4 periods!
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CNN front-ends for audio classification
Sample-level:  Lee et al., 2017 – Sample-level Deep Convolutional Neural Networks for Music Auto-
tagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

VGG: Choi et al., 2016 – Automatic tagging using deep convolutional neural networks in Proceedings of 
the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 – End-to-end learning for music audio
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional 
deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 – Learning multiscale features directly from waveforms
in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 – Experimenting with musically motivated 
convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing
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Which deep learning architectures are most appropriate for (music) audio signals?

In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

● Musically Motivated CNNs for music tagging (Chapter III)

● Non-trained CNNs for music and audio tagging (Chapter IV)

● Music tagging at scale (Chapter V)

● Audio tagging with few training data (Chapter VI)

● Conclusions (Chapter VII)
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Methodology

Method? Features (embeddings of random CNN) 
+ classifier

Compare classification accuracies when 
using different (randomly weighted) architectures

Goal? Compare different (randomly weighted) architectures
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Methodology
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waveform log-mel spectrogram
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Studied classifiers: SVM and ELM classifiers

SVM: support 
vector machine

ELM: extreme 
learning machine
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The deep learning pipeline: output

input outputfront-end classifier

waveform

log-mel
spectrogram

nine randomly
weighted CNN
architectures

SVM or ELM music & audio
tagging
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Random CNN features: Extended Ballroom
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Do you remember the temporal CNN?
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Random CNN features: Extended Ballroom
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Random CNN features: Extended Ballroom
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89.82 % (best random CNN) < 93.7 % (SOTA)
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Random CNN features: Extended Ballroom
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Random CNN features: Urban Sound 8k
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Random CNN features: Urban Sound 8k
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70.74 % (best random CNN) < 73 % (SOTA)
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Random CNN features: Urban Sound 8k
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Summary

● Waveform front-ends: sample-level >> frame-level many > frame-level

● Spectrogram front-ends: allowing pitch-shifting is beneficial (7x86>7x96)

● Music tagging: using prior music domain knowledge can be useful

● Audio tagging: the VGG, a computer vision architecture, achieves the best results
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Which deep learning architectures are most appropriate for (music) audio signals?

In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

● Musically Motivated CNNs for music tagging (Chapter III)

● Non-trained CNNs for music and audio tagging (Chapter IV)

● Music tagging at scale (Chapter V)

● Audio tagging with few training data (Chapter VI)

● Conclusions (Chapter VII)
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Which deep learning models 
perform best at scale?
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waveform-based model – generic CNN architecture

Which deep learning models 
perform best at scale?
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(Lee et al., 2017)

Which deep learning models 
perform best at scale?
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spectrogram-based model – CNN architecture for music

(Lee et al., 2017)

Which deep learning models 
perform best at scale?
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(Pons et al., 2016)

(Lee et al., 2017)

Which deep learning models 
perform best at scale?
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Same back-end: to allow a fair comparison
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MagnaTT
Million song dataset 1M25k 250k

songs songssongs

spectrograms > waveforms

spectrograms ? waveforms 
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Million song dataset 1M25k 250k
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waveforms > spectrograms
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Audio tagging with few data: how?

● Strong regularization
– Will show the limitations of the standard deep learning pipeline

● Prototypical networks

– A distance-based classifier that operates over a learn latent space

● Transfer learning
– Enables to leverage external sources of audio data 
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Methodology  
The MFCC’s + nearest neighbor baseline case
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Regularized models        Prototypical networks        Transfer learning
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Regularized models

Regularized models        Prototypical networks        Transfer learning
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Regularized models
Input: log-mel spectrogram of 128 bins x 3 sec (128 frames)     

● SB-CNN: 250k parameters

– Inspired by AlexNet’s computer vision architecture

– 3 CNN layers (5x5) with max-pool + dense layer + softmax

● VGG: 50k parameters

– yet another computer vision architecture

– 5 CNN layers (3x3) with max-pool (2x2) + softmax

● TIMBRE: 10k parameters

– The smallest CNN one can imagine for learning timbral traces

– 1 CNN layer (vertical filters 108x7) with maxpool + softmax
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Prototypical networks

Regularized models        Prototypical networks        Transfer learning
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Prototypical networks

0. Compute a prototype per class (k):

1. Learning f  ( · ): to separate classes 
in the embedding space of size 10.

2. Classification: distribution based 
on a softmax over distances to the 
prototypes in the embedding space.

In our experiments: 
a VGG parametrizes f  ( · ) 
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Transfer learning

Regularized models        Prototypical networks        Transfer learning
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Transfer learning

AudioSet dataset
(acoustic event recognition)

2M Youtube audios

US8K dataset
(acoustic event recognition)

ASC-TUT dataset
(acoustic scene classification)

pretrain with
source task

finetune with
target task(s)

Finetuning of classifier:
dense softmax layer

Pre-trained VGGish on AudioSet:
6 CNN layers (3×3)

with max-pool layers (2×2) +  
3 dense layers (4096, 4096, 128)
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Summary

● Strong regularization

– To realize the limitations of the standard deep learning pipeline

● Prototypical networks

– A distance-based classifier that operates over a learn latent space

– Particularly useful when
● No additional “similar” data is accessible

● Transfer learning

– Enables to leverage external sources of audio data 
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Music tagging: 

– Musically motivated CNNs perform similarly (if not better) than its counterparts 

– Intuitive design strategy that allows interpretable CNNs

– It allows designing compact CNNs

Audio tagging:

– A computer vision architecture, VGG, achieves the best results

– Potentially because is flexible and general audio is very diverse

Which deep learning architectures are most appropriate for (music) audio signals?

Research question I
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Initial hypothesis: when large computing power and big training datasets are accessible.

– Large datasets are required for waveform-based > spectrogram-based ones.

– With the appropriate methodology, one can do conclusive research with small 
datasets and with not much hardware resources.

In which scenarios is waveform-based end-to-end learning feasible?

Research question II
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– Large datasets are required for developing state-of-the-art models.

– With the appropriate methodology, one can do conclusive research with small 
datasets and with not much hardware resources.

How much data is required for carrying out competitive deep learning research?

Research question III
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● Jordi Pons & Xavier Serra. musicnn: pre-trained convolutional neural networks for music audio tagging. LBD-ISMIR, 2019.

– https://github.com/jordipons/musicnn

● Jordi Pons, Joan Serrà & Xavier Serra. Training neural audio classifiers with few data. ICASSP, 2019. 

– Oral presentation.

– https://github.com/jordipons/neural-classifiers-with-few-audio

● Jordi Pons & Xavier Serra. Randomly weighted CNNs for (music) audio classification. ICASSP, 2019.

– https://github.com/jordipons/elmarc

● Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F. Ehmann & Xavier Serra. End-to-end learning for music audio tagging at scale. ISMIR, 2018.

–  Best student paper award

– https://github.com/jordipons/music-audio-tagging-at-scale-models

● Jordi Pons, Rong Gong & Xavier Serra. Score-informed syllable segmentation for a capella singing voice with convolutional neural networks. ISMIR, 2017.

– https://github.com/ronggong/jingjuSyllabicSegmentaion

● Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez & Xavier Serra. Timbre Analysis of Music Audio Signals with Convolutional Neural Networks. EUSIPCO, 2017.

– https://github.com/jordipons/EUSIPCO2017

– Oral presentation

● Jordi Pons & Xavier Serra. Designing efficient architectures for modeling temporal features with convolutional neural networks. ICASSP, 2017.

– https://github.com/jordipons/ICASSP2017

● Jordi Pons, Thomas Lidy & Xavier Serra. Experimenting with musically motivated convolutional neural networks. CBMI, 2016.

– Best paper award

– https://github.com/jordipons/CBMI2016

Publications, code & awards
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Muddy Waters: Screamin and Cryin’
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Muddy Waters: Screamin and Cryin’
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Queen: Bohemian Rhapsody
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Queen: Bohemian Rhapsody
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Queen: Bohemian Rhapsody
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Queen: Bohemian Rhapsody
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Thank you, and also thanks to all my collaborators!
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Correspondences between trained and non-trained CNNs

● Waveform front-ends: sample-level >> frame-level many > frame-level

– (Lee et al., 2017): the original sample-level CNN paper results.

– (Pons et al, 2018): at Pandora I was informally experimenting with those.

– (van den Oord, 2016): the original Wavenet is a sample-level CNN.

● Spectrogram front-ends: allowing pitch-shifting is beneficial (7x86>7x96)

– (Pons et al, 2016): We explicitly measured this trend.

– (Oramas et al, 2017): They also explicitly measured this trend.

● Music tagging: using prior music domain knowledge can be useful

● Audio tagging: the VGG, a computer vision architecture, achieves the best results
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