Deep neural networks for music and audio tagging

Jordi Pons

jordipons.me – @jordiponsdotme

supervisor: Xavier Serra

Music and audio tagging

Deep neural networks

input machine learning output

waveform

or any audio representation!

deep neural networks (CNNs, RNNs, DNNs)

music tags

acoustic scenes

sound events

Research question I

- Deep artificial neural networks can be a suitable tool for modeling music and audio computationally.
- Artificial neural networks were **not widely used** for music and audio. Hence, deep learning was still a promise to be explored and it was not clear how researchers would adopt it.

Which deep learning architectures are most appropriate for (music) audio signals?

Research question II

- It exists an end-to-end learning trend among deep learning researchers, who are exploring the possibilities of this approach.
- "End-to-end learning for audio is an impossible endeavor". It existed the idea that for end-to-end learning to be viable, much more computing power and training data were required.

In which scenarios is waveform-based end-to-end learning feasible?

Research question III

 Artificial neural networks require a significant amount of data to be competitive.

How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Most researchers use computer vision architectures

Spectrograms are not images

- No special meaning
- Vertical axis: frequency
- Horizontal axis: time

Most researchers use computer vision architectures

Most researchers use computer vision architectures

Spectrogram input

M=40 mel bands

N= 80 frames (1.85 sec)

CNN filter shape

m=12 mel bands

n=8 frames (0.18 sec)

Musically Motivated CNNs

- Discuss the importance of the CNN filter shapes
- Explore vertical or horitzontal CNN filter shapes in the first layer
- Show that can perform similarly with an order of magnitude less number of learnable parameters
 - Task: classify rhythm classes
 - Performance: ≈ 87% accuracy

TemporalCNN: many horizontal filters

- Investigate using many different filters in the same layer
- Show that can perform the same with an extra order of magnitude less number of trainable parameters
 - Task: classify rhythm classes
 - Improve from $\approx 87\%$ to $\approx 92\%$ accuracy

TimbreCNN: many vertical filters

- Pitch invariant filters: vertical convolution
- Show that can perform the same (if not better) with an order of magnitude less number of trainable parameters
 - Task I: Singing voice phoneme classification
 - Task II: Musical instrument recognition
 - Task III: Music tagging

A novel design strategy for music CNNs

How our work contributes to the state-of-the-art?

input machine learning output

waveform

or any audio representation!

deep neural networks

music tags

acoustic scenes

sound events

How our work contributes to the state-of-the-art?

waveform

or any audio representation!

music tags

acoustic scenes

sound

How our work contributes to the state-of-the-art?

based on	filters config?	input signal?	
domain knowledge?		<u>waveform</u>	<u>spectrogram</u>
			23

Waveform end-to-end learning

Time-frequency representation

e.g.: log-mel spectrogram

VGG

based on	filters config?	input signal?	
domain knowledge?		<u>waveform</u>	<u>spectrogram</u>
no	minimal filter expression	sample-level 3x1 3x1 3x1 3x1	VGG 3x3 3x3 3x3 3x3

Waveform end-to-end learning

Time-frequency representation

e.g.: log-mel spectrogram

Waveform end-to-end learning

filter length: 512 window length? stride: 256 hop size?

frame-level

Time-frequency representation

e.g.: log-mel spectrogram

Explicitly tailoring the CNN towards learning temporal *or* timbral cues

vertical or horizontal filters

input signal? based on filters domain config? knowledge? waveform spectrogram **VGG** sample-level *minimal* filter no 3x3 3x3 3x1 3x1 3x1 3x1 expression vertical OR horizontal frame-level single filter shape in 1st yes or CNN layer

3x3 3x3

Waveform end-to-end learning

Frame-level (many shapes!)

Time-frequency representation *e.g.*: log-mel spectrogram

Explicitly tailoring the CNN towards learning temporal *and* timbral cues

Vertical and/or horizontal

based on domain knowledge?	filters	input signal?		
	config?	<u>waveform</u>	<u>spectrogram</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	VGG 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level	vertical <i>OR</i> horizontal or	
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level	vertical AND/OR horizontal	

based on	filters	input signal?		
domain knowledge?		<u>waveform</u>	<u>spectrogram</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	VGG 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level	vertical OR horizontal or	
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level	vertical AND/OR horizontal 31	

CNN front-ends for audio classification

Sample-level: Lee et al., 2017 – Sample-level Deep Convolutional Neural Networks for Music Autotagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

VGG: Choi et al., 2016 – **Automatic tagging using deep convolutional neural networks** in Proceedings of the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 – End-to-end learning for music audio in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 – Learning multiscale features directly from waveforms in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 – Experimenting with musically motivated convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)

Conclusions (Chapter VII)

Methodology

Goal? Compare different (randomly weighted) architectures

Method? Features (embeddings of random CNN) + classifier

Compare classification accuracies when using different (randomly weighted) architectures

Methodology

On Random Weights and Unsupervised Feature Learning

Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng Stanford University

Stanford, CA 94305

{asaxe, pangwei, zhenghao, mbhand, bipins, ang}@cs.stanford.edu

Figure 5: Classification performance of random-weight networks vs pretrained and finetuned networks. Left: NORB-mono. Right: CIFAR-10-mono (Error bars represent a 95% confidence interval about the mean)

4 Fast architecture selection

When we plot the classification performance of random-weight architectures against trained-weight architectures, a distinctive trend emerges: we see that architectures which perform well with random weights also tend to perform well with pretrained and finetuned weights, and vice versa (Fig. 5). Intuitively, our analysis in Section 2 suggests that random-weight performance is not truly random but should correlate with the corresponding trained-weight performance, as both are linked to intrinsic properties of the architecture. Indeed, this happens in practice.

waveform

log-mel spectrogram

?

music & audio tagging

waveform

log-mel spectrogram

nine randomly weighted CNN architectures

?

music & audio tagging

Studied classifiers: SVM and ELM classifiers

SVM: support vector machine

ELM: extreme learning machine

The deep learning pipeline: output

Do you remember the temporal CNN?

89.82 % (best random CNN) < 93.7 % (SOTA)

Random CNN features: Urban Sound 8k

Random CNN features: Urban Sound 8k

70.74 % (best random CNN) < 73 % (SOTA)

Random CNN features: Urban Sound 8k

Summary

- Waveform front-ends: sample-level >> frame-level many > frame-level
- **Spectrogram front-ends:** allowing pitch-shifting is beneficial (7x86>7x96)
- Music tagging: using prior music domain knowledge can be useful
- Audio tagging: the VGG, a computer vision architecture, achieves the best results

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible? How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible? How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for (music) audio signals?

In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Million song dataset
250K
songs

1 Songs

waveform-based model – generic CNN architecture

spectrogram-based model – CNN architecture for music

Same back-end: to allow a fair comparison

Million song dataset
250K
songs

Songs

spectrograms > waveforms

spectrograms? waveforms

spectrograms > waveforms

_	train	ROC	PR
Models	size	AUC	AUC
Baseline	1.2M	91.61%	54.27%
Waveform	1M	$\boldsymbol{92.50\%}$	61.20 %
Spectrogram	1M	92.17%	59.92%
Waveform	500k	91.16%	56.42%
Spectrogram	500k	91.61%	58.18%
Waveform	100k	90.27%	52.76%
Spectrogram	100k	90.14%	52.67%

waveforms > spectrograms

spectrograms > waveforms

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible? How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible? How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for (music) audio signals? In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Audio tagging with few data: how?

Strong regularization

- Will show the limitations of the standard deep learning pipeline

Prototypical networks

A distance-based classifier that operates over a learn latent space

Transfer learning

Enables to leverage external sources of audio data

Methodology

The MFCC's + nearest neighbor baseline case

Regularized models Prototypical networks Transfer learning

Regularized models

Regularized models

Input: log-mel spectrogram of 128 bins x 3 sec (128 frames)

- SB-CNN: 250k parameters
 - Inspired by AlexNet's computer vision architecture
 - 3 CNN layers (5x5) with max-pool + dense layer + softmax
- VGG: 50k parameters
 - yet another computer vision architecture
 - 5 CNN layers (3x3) with max-pool (2x2) + softmax
- **TIMBRE**: **10k** parameters
 - The smallest CNN one can imagine for learning timbral traces
 - 1 CNN layer (vertical filters 108x7) with maxpool + softmax

---- Random guess
--*- Nearest-neigbor MFCCs

Prototypical networks

Prototypical networks

In our experiments: a VGG parametrizes $f_{\phi}(\cdot)$

0. Compute a prototype per class (*k*):

$$c_k = \mu_k = \frac{1}{|S_k|} \sum_{x_i \in S_k} f_\phi(x_i)$$

1. Learning $f_{\phi}(\cdot)$: to separate classes in the embedding space of size 10.

2. Classification: distribution based on a softmax over distances to the prototypes in the embedding space.

Transfer learning

Transfer learning

pretrain with source task

finetune with target task(s)

AudioSet dataset

(acoustic event recognition)
2M Youtube audios

US8K dataset (acoustic event recognition)

ASC-TUT dataset

(acoustic scene classification)

Pre-trained **VGGish** on AudioSet: 6 CNN layers (3×3) with max-pool layers (2×2) + 3 dense layers (4096, 4096, 128)

Finetuning of classifier: dense softmax layer

--- Prototypical Net

Summary

Strong regularization

To realize the limitations of the standard deep learning pipeline

Prototypical networks

- A distance-based classifier that operates over a learn latent space
- Particularly useful when
 - No additional "similar" data is accessible

Transfer learning

Enables to leverage external sources of audio data

Which deep learning architectures are most appropriate for(music) audio signals? In which scenarios is waveform-based end-to-end learning feasible? How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Which deep learning architectures are most appropriate for(music) audio signals? In which scenarios is waveform-based end-to-end learning feasible? How much data is required for carrying out competitive deep learning research?

- Musically Motivated CNNs for music tagging (Chapter III)
- Non-trained CNNs for music and audio tagging (Chapter IV)
- Music tagging at scale (Chapter V)
- Audio tagging with few training data (Chapter VI)
- Conclusions (Chapter VII)

Research question I

Which deep learning architectures are most appropriate for (music) audio signals?

Music tagging:

- Musically motivated CNNs perform similarly (if not better) than its counterparts
- Intuitive design strategy that allows interpretable CNNs
- It allows designing compact CNNs

Audio tagging:

- A computer vision architecture, VGG, achieves the best results
- Potentially because is flexible and general audio is very diverse

Research question II

In which scenarios is waveform-based end-to-end learning feasible?

Initial hypothesis: when large computing power and big training datasets are accessible.

- Large datasets are required for waveform-based > spectrogram-based ones.
- With the appropriate methodology, one can do conclusive research with small datasets and with not much hardware resources.

Research question III

How much data is required for carrying out competitive deep learning research?

- Large datasets are required for developing state-of-the-art models.
- With the appropriate methodology, one can do conclusive research with small datasets and with not much hardware resources.

Publications, code & awards

- Jordi Pons & Xavier Serra. musicnn: pre-trained convolutional neural networks for music audio tagging. LBD-ISMIR, 2019.
 - https://github.com/jordipons/musicnn
- Jordi Pons, Joan Serrà & Xavier Serra. Training neural audio classifiers with few data. ICASSP, 2019.
 - Oral presentation.
 - https://github.com/jordipons/neural-classifiers-with-few-audio
- Jordi Pons & Xavier Serra. Randomly weighted CNNs for (music) audio classification. ICASSP, 2019.
 - https://github.com/jordipons/elmarc
- Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F. Ehmann & Xavier Serra. End-to-end learning for music audio tagging at scale. ISMIR, 2018.
 - Best student paper award
 - https://github.com/jordipons/music-audio-tagging-at-scale-models
- Jordi Pons, Rong Gong & Xavier Serra. Score-informed syllable segmentation for a capella singing voice with convolutional neural networks. ISMIR, 2017.
 - https://github.com/ronggong/jingjuSyllabicSegmentaion
- Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez & Xavier Serra. Timbre Analysis of Music Audio Signals with Convolutional Neural Networks. EUSIPCO, 2017.
 - https://github.com/jordipons/EUSIPCO2017
 - Oral presentation
- Jordi Pons & Xavier Serra. Designing efficient architectures for modeling temporal features with convolutional neural networks. ICASSP, 2017.
 - https://github.com/jordipons/ICASSP2017
- Jordi Pons, Thomas Lidy & Xavier Serra. Experimenting with musically motivated convolutional neural networks. CBMI, 2016.
 - Best paper award
 - https://github.com/jordipons/CBMI2016

Muddy Waters: Screamin and Cryin'

Muddy Waters: Screamin and Cryin'

Thank you, and also thanks to all my collaborators!

Correspondences between trained and non-trained CNNs

- Waveform front-ends: sample-level >> frame-level many > frame-level
 - (Lee et al., 2017): the original sample-level CNN paper results.
 - (Pons et al, 2018): at Pandora I was informally experimenting with those.
 - (van den Oord, 2016): the original Wavenet is a sample-level CNN.
- Spectrogram front-ends: allowing pitch-shifting is beneficial (7x86>7x96)
 - (Pons et al, 2016): We explicitly measured this trend.
 - (Oramas et al, 2017): They also explicitly measured this trend.
- Music tagging: using prior music domain knowledge can be useful
- Audio tagging: the VGG, a computer vision architecture, achieves the best results