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Research question |

- Deep artificial neural networks can be a suitable tool for modeling
music and audio computationally.

- Atrtificial neural networks were not widely used for music and
audio. Hence, deep learning was still a promise to be explored and
it was not clear how researchers would adopt it.

Which deep learning architectures are
most appropriate for (music) audio signals?



Research question Il

- It exists an end-to-end learning trend among deep learning
researchers, who are exploring the possibilities of this approach.

- “End-to-end learning for audio is an impossible endeavor”. It
existed the idea that for end-to-end learning to be viable, much
more computing power and training data were required.

In which scenarios is waveform-based
end-to-end learning feasible?



Research question Il

- Artificial neural networks require a significant amount of data to
be competitive.

How much data is required for carrying out
competitive deep learning research?



Which deep learning architectures are most appropriate for (music) audio signals?
In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

* Musically Motivated CNNs for music tagging (Chapter I11)

* Non-trained CNNSs for music and audio tagging (Chapter 1V)
* Music tagging at scale (Chapter V)

* Audio tagging with few training data (Chapter VI)

* Conclusions (Chapter VII)
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Most researchers use computer vision architectures

Spectrograms are not images
— No special meaning

- Vertical axis: frequency

— Horizontal axis: time
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Most researchers use computer vision architectures
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Most researchers use computer vision architectures

feed-forward layer
200 units
50% droput

m max-pool
M (4,1)
z ]

output layer

N .
- 8 units
convolutional layer softmax
32 filter maps
Spectrogram input CNN filter shape
M=40 mel bands m=12 mel bands
N= 80 frames (1.85 sec) n=8 frames (0.18 sec)
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Musically Motivated CNNs

* Discuss the importance of the CNN filter
shapes

* Explore vertical or horitzontal CNN filter
shapes in the first layer

* Show that can perform similarly with an
order of magnitude less number of
learnable parameters

- Task: classify rhythm classes
- Performance: = 87% accuracy
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Pons, Lidy & Serra. Experimenting with musically motivated convolutional neural networks. CBMI2016.



TemporalCNN:
many horizontal filters

* |nvestigate using many different
filters in the same layer

* Show that can perform the same with
an extra order of magnitude less
number of trainable parameters

- Task: classify rhythm classes
— Improve from = 87% to = 92% accuracy

Pons & Serra. Designing efficient architectures for modeling temporal features with convolutional neural networks. ICASSP2017.
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TimbreCNN:
many vertical filters

e Pitch invariant filters: vertical convolution

* Show that can perform the same (if not
better) with an order of magnitude less
number of trainable parameters

- Task I: Singing voice phoneme classification
- Task Il: Musical instrument recognition
- Task Ill: Music tagging

Pons, Slizovskaia, Gong, Gémez & Serra. Timbre Analysis of Music Audio Signals with Convolutional Neural Networks. EUSIPCO2017.
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A novel design strategy for music CNNs
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How our work contributes to the state-of-the-art?
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How our work contributes to the state-of-the-art?
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end-to-end learning
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based on input signal?
domain filters
knowledge? config? waveform spectrogram
. sample-level VGG
minimal
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Waveform
end-to-end learning

Time-frequency representation
e.g.: log-mel spectrogram
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Waveform
end-to-end learning

filter length: 512 window length?
stride: 256 hop size?

frame-level

Time-frequency representation
e.g.: log-mel spectrogram

Explicitly tailoring the CNN towards
learning temporal or timbral cues

vertical or horizontal filters
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based on input signal?
domain filters
knowledge? config? waveform spectrogram
minimal sample-level VGG
no filter MW"MSM 3x1 3x1 3x1 3x3 3x3 3x3
expression
_ _ frame-level
single filter
yes shape in 1%
CNN layer
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Waveform Time-frequency representation
end-to-end learning e.g.: log-mel spectrogram
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W 4 periods! learning temporal and timbral cues

Frame-level (many shapes!) Vertical and/or horizontal
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based on input signal?
domain filters
knowledge? config? waveform spectrogram
minimal sample-level VGG
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CNN front-ends for audio classification

Sample-level: Lee et al., 2017 — Sample-level Deep Convolutional Neural Networks for Music Auto-
tagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

VGG: Choi et al., 2016 — Automatic tagging using deep convolutional neural networks in Proceedings of
the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 — End-to-end learning for music audio
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 — Unsupervised feature learning for audio classification using convolutional
deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 — Improved musical onset detection with convolutional neural networks
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 — Learning multiscale features directly from waveforms
in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 — Experimenting with musically motivated
convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing 32



Which deep learning architectures are most appropriate for (music) audio signals?
In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

* Musically Motivated CNNs for music tagging (Chapter I11)

* Non-trained CNNSs for music and audio tagging (Chapter 1V)
* Music tagging at scale (Chapter V)

* Audio tagging with few training data (Chapter VI)

* Conclusions (Chapter VII)
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Methodology

Goal? Compare different (randomly weighted) architectures

Method? Features (embeddings of random CNN)
+ classifier

Compare classification accuracies when
using different (randomly weighted) architectures
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Methodology
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Figure 5: Classification performance of random-weight networks vs pretrained and finetuned networks.
Left: NORB-mono. Right: CIFAR-10-mono (Error bars represent a 95% confidence interval about the mean)

Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, \
Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng 4 Fast architecture selection
Stanford University
Stanford, CA 94305

When we plot the classification performance of random-weight architectures against trained-weight
{asaxe, pangwei, zhenghao, mbhand, bipins, ang}[-:s .stanford.edu b B g g g

architectures, a distinctive trend emerges: we see that architectures which perform well with random
weights also tend to perform well with pretrained and finetuned weights, and vice versa (Fig. 5). In-
tuitively, our analysis in Section 2 suggests that random-weight performance is not truly random but
should correlate with the corresponding trained-weight performance, as both are linked to intrinsic
properties of the architecture. Indeed, this happens in practice.
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input signal?

based on
domain filters
knowledge? config? waveform log-mel spectrogram
minimal sample-level VGG
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Studied classifiers: SVM and ELM classifiers

'm SCWNED

SVM: support ELM: extreme

vector machine learning machine
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The deep learning pipeline: output
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waveform nine randomly SVM or ELM music & audio
weighted CNN tagging
log-mel architectures

spectrogram
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Random CNN features: Extended Ballroom

44



Do you remember the temporal CNN?

Temporal

MEAN POOL

(same) energy envelope
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Random CNN features: Extended Ballroom

Classification accuracy
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Random CNN features: Extended Ballroom
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Random CNN features: Extended Ballroom

Classification accuracy
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89.82 % (best random CNN) < 93.7 % (SOTA)
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Random CNN features: Extended Ballroom

Classification accuracy
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Random CNN features: Urban Sound 8k

Classification accuracy
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Random CNN features: Urban Sound 8k

Classification accuracy
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Random CNN features: Urban Sound 8k

Classification accuracy
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Summary

Waveform front-ends: sample-level >> frame-level many > frame-level

Spectrogram front-ends: allowing pitch-shifting is beneficial (7x86>7x96)

Music tagging: using prior music domain knowledge can be useful

Audio tagging: the VGG, a computer vision architecture, achieves the best results
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Which deep learning architectures are most appropriate for (music) audio signals?
In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

* Musically Motivated CNNs for music tagging (Chapter I11)

* Non-trained CNNSs for music and audio tagging (Chapter 1V)
* Music tagging at scale (Chapter V)

* Audio tagging with few training data (Chapter VI)

* Conclusions (Chapter VII)
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Which deep learning models
perform best at scale?
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Which deep learning models
perform best at scale?

waveform-based model — generic CNN architecture
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Which deep learning models
perform best at scale?
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(Lee et al., 2017)
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Which deep learning models
perform best at scale?
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(Lee et al., 2017)

spectrogram-based model — CNN architecture for music
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Which deep learning models
perform best at scale?
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Same back-end: to allow a fair comparison
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spectrograms > waveforms
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spectrograms > waveforms
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| train | ROC R

Models size AUC AUC

Baseline 1.2M | 91.61% 54.27%
Waveform IM | 92.50% 61.20%
Spectrogram | 1M | 92.17%  59.92%
Waveform 500k | 91.16%  56.42%
Spectrogram | 500k | 91.61%  58.18%
Waveform 100k | 90.27%  52.76%
Spectrogram | 100k | 90.14%  52.67%
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spectrograms > waveforms

MagnaTlT

25k
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Million song dataset
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waveforms > spectrograms

1V

songs
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Which deep learning architectures are most appropriate for (music) audio signals?
In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

* Musically Motivated CNNs for music tagging (Chapter I11)

* Non-trained CNNSs for music and audio tagging (Chapter 1V)
* Music tagging at scale (Chapter V)

* Audio tagging with few training data (Chapter VI)

* Conclusions (Chapter VII)
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Audio tagging with few data: how?

Strong regularization

- Wil show the limitations of the standard deep learning pipeline
Prototypical networks

- A distance-based classifier that operates over a learn latent space
Transfer learning

- Enables to leverage external sources of audio data
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Methodology

The MFCC'’s + nearest neighbor baseline case

Acoustic event recognition Acoustic scene classification
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Number of training examples per class (n)
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Regularized models Prototypical networks Transfer learning
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Regularized models

Regularized models
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Regularized models

Input: log-mel spectrogram of 128 bins x 3 sec (128 frames)

SB-CNN: 250k parameters
- Inspired by AlexNet's computer vision architecture
- 3 CNN layers (5x5) with max-pool + dense layer + softmax
VGG: 50k parameters
- yet another computer vision architecture
- 5 CNN layers (3x3) with max-pool (2x2) + softmax
TIMBRE: 10k parameters
- The smallest CNN one can imagine for learning timbral traces
- 1 CNN layer (vertical filters 108x7) with maxpool + softmax
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Accuracy
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----- Random guess
Nearest-neigbor MFCCs
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Accuracy
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Prototypical networks

Prototypical networks
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Prototypical networks

In our experiments:
a VGG parametrizes f ,( - )

0. Compute a prototype per class (k):

Ck:,uk:m Z fo(xi)

1. Learning f ( - ): to separate classes
In the embedding space of size 10.

2. Classification: distribution based
on a softmax over distances to the
prototypes in the embedding space.
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Accuracy
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VGG Nearest-neigbor MFCCs

—&®— T TIMBRE —l— Prototypical Net

Acoustic event recognition Acoustic scene classification

2 5 10 20 50 100 1 2 5 10 20 50 100

Number of training examples per class (n)

85



Transfer learning

Transfer learning
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Transfer learning

pretrain with
source task

AudioSet dataset
(acoustic event recognition)
2M Youtube audios

Pre-trained VGGish on AudioSet:
6 CNN layers (3x%3)
with max-pool layers (2x2) +
3 dense layers (4096, 4096, 128)

finetune with
target task(s)

USS8K dataset
(acoustic event recognition)

ASC-TUT dataset
(acoustic scene classification)

Finetuning of classifier:
dense softmax layer
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Accuracy
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Accuracy

—@— Transfer learning (finetuning) ~ ====-= Random guess
—— Prototypical Net

Acoustic event recognition Acoustic scene classification

1 2 5 10 20 50 100 1 2 5 10 20 50

Number of training examples per class ()
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Summary

Strong regularization
- To realize the limitations of the standard deep learning pipeline
Prototypical networks
- Adistance-based classifier that operates over a learn latent space
- Particularly useful when
* No additional “similar” data is accessible
Transfer learning

- Enables to leverage external sources of audio data
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Which deep learning architectures are most appropriate for(music) audio signals?
In which scenarios is waveform-based end-to-end learning feasible?

How much data is required for carrying out competitive deep learning research?

* Musically Motivated CNNs for music tagging (Chapter I11)

* Non-trained CNNSs for music and audio tagging (Chapter 1V)
* Music tagging at scale (Chapter V)

* Audio tagging with few training data (Chapter VI)

* Conclusions (Chapter VII)
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Research question |

Which deep learning architectures are most appropriate for (music) audio signals?

Music tagging:
— Musically motivated CNNs perform similarly (if not better) than its counterparts
— Intuitive design strategy that allows interpretable CNNs
— It allows designing compact CNNs
Audio tagging:
— A computer vision architecture, VGG, achieves the best results
- Potentially because is flexible and general audio is very diverse
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Research guestion Il

In which scenarios is waveform-based end-to-end learning feasible?

Initial hypothesis: when large computing power and big training datasets are accessible.
- Large datasets are required for waveform-based > spectrogram-based ones.

- With the appropriate methodology, one can do conclusive research with small
datasets and with not much hardware resources.
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Research question Ill

How much data is required for carrying out competitive deep learning research?

- Large datasets are required for developing state-of-the-art models.

- With the appropriate methodology, one can do conclusive research with small
datasets and with not much hardware resources.
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Publications, code & awards

Jordi Pons & Xavier Serra. musicnn: pre-trained convolutional neural networks for music audio tagging. LBD-ISMIR, 2019.

- https://github.com/jordipons/musicnn

Jordi Pons, Joan Serra & Xavier Serra. Training neural audio classifiers with few data. ICASSP, 2019.
- Oral presentation.

- https://github.com/jordipons/neural-classifiers-with-few-audio

Jordi Pons & Xavier Serra. Randomly weighted CNNs for (music) audio classification. ICASSP, 2019.

- https://github.com/jordipons/elmarc

Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F. Ehmann & Xavier Serra. End-to-end learning for music audio tagging at scale. ISMIR, 2018.
- Best student paper award

- https://github.com/jordipons/music-audio-tagging-at-scale-models

Jordi Pons, Rong Gong & Xavier Serra. Score-informed syllable segmentation for a capella singing voice with convolutional neural networks. ISMIR, 2017.

- https://github.com/ronggong/jingjuSyllabicSegmentaion

Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gémez & Xavier Serra. Timbre Analysis of Music Audio Signals with Convolutional Neural Networks. EUSIPCO, 2017.
- https://github.com/jordipons/EUSIPC0O2017

- Oral presentation

Jordi Pons & Xavier Serra. Designing efficient architectures for modeling temporal features with convolutional neural networks. ICASSP, 2017.
- https://github.com/jordipons/ICASSP2017

Jordi Pons, Thomas Lidy & Xavier Serra. Experimenting with musically motivated convolutional neural networks. CBMI, 2016.
-  Best paper award
- https://github.com/jordipons/CBMI2016
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K jordipons / musicnn @Waich~ 3 | JUnstar 127 | Y Fork 14

¢»Code  ()lssues 1 i) Pull requests 0 [l Projects 0 & Wiki  [§) Security |il: Insights £+ Settings

Pronounced as "musician”, musicnn is a set of pre-trained deep convolutional neural networks for music audio tagging. Edit

Manage topics

0y commits ranc releases contributor
369 i 1b h > 0rel 1 ib ISC

Create new file = Upload files = Find file Clone or download ~

Latest commit 96dd51f 26 days ago

Branch: master = New pull request

E jordipons Update extractor.py

I audio

i images

I musicnn

E) .gitignore

E) DOCUMENTATION.md
E) FAQs.md

E] LICENSE.md

E) MANIFEST.in

E) README.md

) musicnn_example.ipynb
E) setup.py

) tagging example.ipynb

) vgg_example.ipynb

Motebook functioning with basic demo

Debugging functions, and renaming tagging_example.ipynb
Update extractor.py

Adding new MSD model and VGGs

Update DOCUMENTATION.md

Update FAQs.md

Minor fixes for pushing to PyPI

Update MANIFEST.in

Update README.md

Updating notebooks

Ready to upload v.0.1.0 to PyPI

Debugging functions, and renaming tagging example.ipynb

Updating notebooks

pip install musicnn

4 months ago
3 months ago

26 days ago
4 months ago
3 months ago
2 months ago
4 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago

3 months ago
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Thank you, and also thanks to all my collaborators!

upf.| Teenology Pﬁiﬁﬁm pandora Yelefonica

Group DE MAEZTU
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Correspondences between trained and non-trained CNNSs

Waveform front-ends: sample-level >> frame-level many > frame-level
- (Lee et al., 2017): the original sample-level CNN paper results.
- (Pons et al, 2018): at Pandora | was informally experimenting with those.
- (van den Oord, 2016): the original Wavenet is a sample-level CNN.

Spectrogram front-ends: allowing pitch-shifting is beneficial (7x86>7x96)
- (Pons et al, 2016): We explicitly measured this trend.
- (Oramas et al, 2017): They also explicitly measured this trend.

Music tagging: using prior music domain knowledge can be useful

Audio tagging: the VGG, a computer vision architecture, achieves the best results
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