Deep learning architectures for music audio classification: a personal (re)view

Jordi Pons

jordipons.me – @jordiponsdotme

Music Technology Group Universitat Pompeu Fabra, Barcelona

Acronyms

MLP: multi layer perceptron \equiv feed-forward neural network

RNN: recurrent neural network

LSTM: long-short term memory

CNN: convolutional neural network

BN: batch normalization

..the following slides assume you know these concepts!

Outline

Chronology: the big picture

Audio classification: state-of-the-art review

Music audio tagging as a study case

Outline

Chronology: the big picture

Audio classification: state-of-the-art review

Music audio tagging as a study case

"Deep learning & music" papers: data trends

"Deep learning & music" papers: some references

Dieleman et al., 2014 – **End-to-end learning for music audio** in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional deep belief networks

in Advances in Neural Information Processing Systems (NIPS)

Marolt et al., 2002 – **Neural networks for note onset detection in piano music** in Proceedings of the International Computer Music Conference (ICMC)

Eck and Schmidhuber, 2002 – Finding temporal structure in music: Blues improvisation with LSTM recurrent networks

in Proceedings of the Workshop on Neural Networks for Signal Processing

Todd, 1988 – A sequential network design for musical applications in Proceedings of the Connectionist Models Summer School

Lewis, 1988 – Creation by Refinement: A creativity paradigm for gradient descent learning networks in International Conference on Neural Networks

Outline

Chronology: the big picture

Audio classification: state-of-the-art review

Music audio tagging as a study case

Which is our goal / task?

input machine learning output

waveform

or any audio representation!

deep learning model

phonetic transcription

describe music with tags

event detection

The deep learning pipeline

waveform

or any audio representation!

phonetic transcription

describe music with tags

event detection

The deep learning pipeline: input?

How to format the input (audio) data?

Waveform end-to-end learning

Pre-processed waveform

e.g.: spectrogram

The deep learning pipeline: front-end?

based on	filters config?	input signal?		
domain knowledge?		<u>waveform</u>	pre-processed waveform	

CNN front-ends for audio classification

Waveform end-to-end learning

Sample-level

Pre-processed waveform

e.g.: spectrogram

Small-rectangular filters

domain filters knowledge? config? <u>waveform</u> <u>pre-processed wave</u>	oform
L. L. L. Consoll restance les fils	<u> </u>
no minimal filter expression sample-level small-rectangular filter and significant states and states are smallered as a small-rectangular filter and significant states are smallered as a	ters x3 3x3

Domain knowledge to design CNN front-ends

Waveform end-to-end learning

Pre-processed waveform

e.g.: spectrogram

Domain knowledge to design CNN front-ends

Waveform end-to-end learning

filter length: 512 window length? stride: 256 hop size?

frame-level

Pre-processed waveform *e.g.*: spectrogram

Explicitly tailoring the CNN towards learning temporal *or* timbral cues

vertical or horizontal filters

based on	filters config?	input signal?		
domain knowledge?		<u>waveform</u>	<u>pre-processed waveform</u>	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	small-rectangular filters 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level	vertical OR horizontal or	

DSP wisdom to design CNN front ends

Waveform end-to-end learning

Efficient way to represent 4 periods!

Pre-processed waveform *e.g.*: spectrogram

Explicitly tailoring the CNN towards learning temporal *and* timbral cues

Frame-level (many shapes!)

Vertical and/or horizontal

based on	filters	input signal?		
domain knowledge?	••	<u>waveform</u>	pre-processed waveform	
no	<u>minimal</u> filter expression	sample-level 3x1 3x1 3x1 3x1	small-rectangular filters 3x3 3x3 3x3 3x3	
yes	<u>single</u> filter shape in 1 st CNN layer	frame-level	vertical <i>OR</i> horizontal or	
yes	<u>many</u> filter shapes in 1 st CNN layer	frame-level	vertical AND/OR horizontal	

CNN front-ends for audio classification

Sample-level: Lee et al., 2017 – Sample-level Deep Convolutional Neural Networks for Music Autotagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

Small-rectangular filters: Choi et al., 2016 – Automatic tagging using deep convolutional neural networks in Proceedings of the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 – End-to-end learning for music audio in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 – Learning multiscale features directly from waveforms in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 – Experimenting with musically motivated convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing

The deep learning pipeline: back-end?

What is the back-end doing?

Back-end adapts a variable-length feature map to a fixed output-size

Back-ends for variable-length inputs

- **Temporal pooling:** max-pool or average-pool the temporal axis

 Pons et al., 2017 **End-to-end learning for music audio tagging at scale**, in proceedings of the ML4Audio Workshop at NIPS.
- Attention: weighting latent representations to what is important
 C. Raffel, 2016 Learning-Based Methods for Comparing Sequences, with Applications to Audio-to-MIDI Alignment and Matching. PhD thesis.
- RNN: summarization through a deep temporal model
 - Vogl et al., 2018 Drum transcription via joint beat and drum modeling using convolutional recurrent neural networks, In proceedings of the ISMIR conference.

..music is generally of variable length!

Back-ends for fixed-length inputs

Common trick: let's assume a fixed-length input

 Fully convolutional stacks: adapting the input to the output with a stack of CNNs & pooling layers.

Choi et al., 2016 – **Automatic tagging using deep convolutional neural networks** in proceedings of the ISMIR conference.

• MLP: map a fixed-length feature map to a fixed-length output

Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks in proceedings of the ICASSP.

..such trick works very well!

The deep learning pipeline: output

The deep learning pipeline: output

event detection

Outline

Chronology: the big picture

Audio classification: state-of-the-art review

Music audio tagging as a study case

Pons et al., 2017. **End-to-end learning for music audio tagging at scale**, in ML4Audio Workshop at NIPS Summer internship @ Pandora

The deep learning pipeline: input?

?

describe music with tags

How to format the input (audio) data?

waveform

already: zero-mean & one-variance

NO pre-procesing!

log-mel spectrogram

- STFT & mel mapping reduces size of the input by removing perceptually irrelevant information
- logarithmic compression
 reduces dynamic range of the input
- zero-mean & one-variance

The deep learning pipeline: input?

waveform

log-mel spectrogram

describe music with tags

The deep learning pipeline: front-end?

based on domain knowledge	filters ? config?	
no	<u>minimal</u> filter expression	Hilliph
yes	<u>single</u> filter shape in 1 st CNN layer	
	<u>many</u> filter	

yes

shapes in 1st

CNN layer

input signal?

<u>waveform</u>

pre-processed waveform

frame-level

vertical *OR* horizontal

or

frame-level

vertical AND/OR horizontal

Studied front-ends: waveform model

sample-level

(Lee et al., 2017)

Studied front-ends: spectrogram model

vertical and horizontalmusically motivated CNNs

(Pons et al., 2016 – 2017)

The deep learning pipeline: front-end?

The deep learning pipeline: back-end?

Studied back-end: music is of variable length!

Temporal pooling

(Dieleman et al., 2014)

The deep learning pipeline: back-end?

Million song dataset
250K
songs

Songs

spectrograms > waveforms

MagnaTT
25k
songs

Million song dataset

250K
songs

waveforms > spectrograms

spectrograms > waveforms

Million song dataset

250K
songs

Let's listen to some music: **our model** in action

acoustic string ensemble classical music period baroque compositional dominance of lead vocals major

Deep learning architectures for music audio classification: a personal (re)view

Jordi Pons

jordipons.me – @jordiponsdotme

Music Technology Group Universitat Pompeu Fabra, Barcelona