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       (Eck and Schmidhuber, 2002)
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“Deep learning & music” papers: some references
Dieleman et al., 2014 – End-to-end learning for music audio
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional deep 
belief networks
in Advances in Neural Information Processing Systems (NIPS)

Matityaho and Furst, 1995. –  Neural network based model for classification of music type
in 18th Convention of Electrical and Electronics Engineers in Israel. IEEE, 4–3.

Eck and Schmidhuber, 2002 – Finding temporal structure in music: Blues improvisation with LSTM 
recurrent networks 
in Proceedings of the Workshop on Neural Networks for Signal Processing

Todd, 1988 – A sequential network design for musical applications
in Proceedings of the Connectionist Models Summer School

Lewis, 1988 – Creation by Refinement: A creativity paradigm for gradient descent learning networks
in International Conference on Neural Networks 
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Task: audio classification

music tags

sound events



  

Which is our goal / task?

input outputmachine learning

waveform

or any audio 
representation!

describe music
with tags

event detection

deep learning model



  

The deep learning pipeline

input outputfront-end back-end

waveform

or any audio
representation!

describe music
with tags

event detection



  

The deep learning pipeline: input?

input

?



  

How to format the input (audio) data?

Waveform
end-to-end learning

Pre-processed waveform
e.g.: spectrogram



  

The deep learning pipeline: front-end?

input front-end

waveform

spectrogram
?



  

waveform pre-processed waveform

based on 
domain 

knowledge?
filters 

config?

input signal?



  

CNN front-ends for audio classification

Waveform
end-to-end learning

Pre-processed waveform
e.g.: spectrogram

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

Sample-level Small-rectangular filters



  

waveform pre-processed waveform
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based on 
domain 

knowledge?
filters 

config?

no
minimal 

filter 
expression

input signal?



  

Domain knowledge to design CNN front-ends

Waveform
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Pre-processed waveform
e.g.: spectrogram



  

Domain knowledge to design CNN front-ends

Waveform
end-to-end learning

Pre-processed waveform
e.g.: spectrogram

frame-level vertical or horizontal filters

filter length: 512    window length?
stride: 256                       hop size?

Explicitly tailoring the CNN towards
 learning temporal or timbral cues



  

waveform pre-processed waveform

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

small-rectangular filterssample-level

based on 
domain 

knowledge?
filters 

config?

yes

no
minimal 

filter 
expression

single filter 
shape in 1st 
CNN layer

frame-level vertical OR horizontal

or

input signal?



  

DSP wisdom to design CNN front ends

Waveform
end-to-end learning

Pre-processed waveform
e.g.: spectrogram

Frame-level (many shapes!) Vertical and/or horizontal

Explicitly tailoring the CNN towards
 learning temporal and timbral cues

Efficient way 
to represent 
4 periods!



  

waveform pre-processed waveform

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

small-rectangular filterssample-level

based on 
domain 

knowledge?
filters 

config?

yes

yes

no
minimal 

filter 
expression

many filter 
shapes in 1st 
CNN layer

single filter 
shape in 1st 
CNN layer

frame-level vertical OR horizontal

frame-level vertical AND/OR horizontal

or

input signal?



  

CNN front-ends for audio classification
Sample-level:  Lee et al., 2017 – Sample-level Deep Convolutional Neural Networks for Music Auto-
tagging Using Raw Waveforms in Sound and Music Computing Conference (SMC)

Small-rectangular filters: Choi et al., 2016 – Automatic tagging using deep convolutional neural networks 
in Proceedings of the ISMIR (International Society of Music Information Retrieval) Conference

Frame-level (single shape): Dieleman et al., 2014 – End-to-end learning for music audio
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Vertical: Lee et al., 2009 – Unsupervised feature learning for audio classification using convolutional 
deep belief networks in Advances in Neural Information Processing Systems (NIPS)

Horizontal: Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks
in International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Frame-level (many shapes): Zhu et al., 2016 – Learning multiscale features directly from waveforms
in arXiv:1603.09509

Vertical and horizontal (many shapes): Pons, et al., 2016 – Experimenting with musically motivated 
convolutional neural networks in 14th International Workshop on Content-Based Multimedia Indexing



  

The deep learning pipeline: back-end?

input front-end back-end

waveform

spectrogram

several CNN
architectures ?



  

What is the back-end doing?

Back-end adapts a variable-length feature map to a fixed output-size

front-end

back-end

same length 
output

latent feature-map

front-end

back-end

same length 
output

latent feature-map



  

● Temporal pooling: max-pool or mean-pool the temporal axis

Pons et al., 2017 – End-to-end learning for music audio tagging at scale, in proceedings of the ML4Audio 
Workshop at NIPS.

● Autopool: a trainable pooling operator which interpolates between common pooling strategies

Mcfee et al., 2018 – Adaptive pooling operators for weakly labeled sound event detection in IEEE 
Transactions on Audio, Speech and Language Processing.

● Attention: weighting latent representations to what is important

C. Raffel, 2016 – Learning-Based Methods for Comparing Sequences, with Applications to Audio-to-MIDI 
Alignment and Matching. PhD thesis.

● RNN: summarization through a deep temporal model

Vogl et al., 2018 – Drum transcription via joint beat and drum modeling using convolutional recurrent 
neural networks, In proceedings of the ISMIR conference.

Back-ends for variable-length inputs

..music is generally of variable length!



  

● Fully convolutional stacks: adapting the input to the output with a stack of CNNs & 
pooling layers.

      Choi et al., 2016 – Automatic tagging using deep convolutional neural networks          

      in proceedings of the ISMIR conference.

● MLP: map a fixed-length feature map to a fixed-length output

      Schluter & Bock, 2014 – Improved musical onset detection with convolutional neural networks 

      in proceedings of the ICASSP.

Back-ends for fixed-length inputs
Common trick: let’s assume a fixed-length input

..such trick works very well!



  

The deep learning pipeline: output

input outputfront-end back-end

waveform

spectrogram

several CNN
architectures

variable-length
input

fixed-length
input

describe music
with tags

event detection
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Pons et al., 2017. End-to-end learning for music audio tagging at scale 

Best student paper award in ISMIR              Summer internship @ Pandora



  

input outputfront-end back-end

describe music
with tags?

The deep learning pipeline: input?



  

How to format the input (audio) data?

waveform log-mel spectrogram

already: zero-mean 
& one-variance

NO pre-procesing!

–  STFT & mel mapping
reduces size of the input by removing 
perceptually irrelevant information

–  logarithmic compression
reduces dynamic range of the input

–  zero-mean & one-variance



  

The deep learning pipeline: input?

input outputfront-end back-end

describe music
with tags

waveform

log-mel
spectrogram



  

The deep learning pipeline: front-end?

input outputfront-end back-end

describe music
with tags?

waveform

log-mel
spectrogram



  

waveform pre-processed waveform

3x3 3x3 ... 3x3 3x33x1 3x1 ... 3x1 3x1

small-rectangular filterssample-level

based on 
domain 

knowledge?
filters 

config?

yes

yes

no
minimal 
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expression
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Studied front-ends: waveform model

sample-level (Lee et al., 2017)



  

Studied front-ends: spectrogram model

vertical and horizontal
musically motivated CNNs

(Pons et al., 2016 – 2017)



  

The deep learning pipeline: front-end?

input outputfront-end back-end

describe music
with tags

waveform

log-mel
spectrogram

sample-level

musically motivated CNN



  

The deep learning pipeline: back-end?

input outputfront-end back-end

describe music
with tags

waveform

log-mel
spectrogram

?sample-level

musically motivated CNN



  

Studied back-end: music is of variable length!

Temporal pooling (Dieleman et al., 2014)



  

The deep learning pipeline: back-end?

input outputfront-end back-end

describe music
with tags

waveform

log-mel
spectrogram

sample-level

musically motivated CNN

temporal pooling



  

MagnaTT
Million song dataset 1M25k 250k

songs songssongs
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spectrograms > waveforms



  

MagnaTT
Million song dataset 1M25k 250k

songs songssongs

spectrograms > waveforms

waveforms > spectrograms



  

Let’s listen to some music: our model in action

acoustic

string ensemble

classical music

period baroque

compositional dominance of 
lead vocals

major
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